16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708 | class bExport:
"""Once analysis is performed with sanpy.bAnalysis.spikeDetect(),
reports can be generated with the bExport class.
Example reports are:
- Generating reports as a Pandas DataFrame.
- (depreciated) Saving reports as a Microsoft Excel file.
- Saving reports as a CSV text files.
"""
def __init__(self, ba):
"""
Args:
ba (sanpy.bAnalysis): A bAnalysis object that has had spikes detected with detectSpikes().
"""
self.ba = ba
self.sweepNumber = 0
def old_report(self, theMin, theMax):
"""
Get entire spikeDict as a Pandas DataFrame.
Args:
theMin (float): Start seconds of the analysis
theMax (float): Stop seconds of the analysis
Returns:
df: Pandas DataFrame
"""
if theMin is None or theMax is None:
# return None
theMin = 0
theMax = self.ba.fileLoader.recordingDur
logger.info(f"theMin:{theMin} theMax:{theMax}")
df = self.ba.asDataFrame()
df = df[(df["thresholdSec"] >= theMin) & (df["thresholdSec"] <= theMax)]
# added when trying to make scatterwidget for one file
df["Condition"] = "" # df['condition1']
df["File Number"] = "" # df['condition2']
df["Sex"] = "" # df['condition3']
df["Region"] = "" # df['condition4']
# make new column with sex/region encoded
"""
tmpNewCol = 'RegSex'
self.ba.masterDf[tmpNewCol] = ''
for tmpRegion in ['Superior', 'Inferior']:
for tmpSex in ['Male', 'Female']:
newEncoding = tmpRegion[0] + tmpSex[0]
regSex = self.ba.masterDf[ (self.ba.masterDf['Region']==tmpRegion) & (self.ba.masterDf['Sex']==tmpSex)]
regSex = (self.ba.masterDf['Region']==tmpRegion) & (self.ba.masterDf['Sex']==tmpSex)
print('newEncoding:', newEncoding, 'regSex:', regSex.shape)
self.ba.masterDf.loc[regSex, tmpNewCol] = newEncoding
"""
# want this but region/sex/condition are not defined
# print('bExport.report()')
# print(df.head())
tmpNewCol = "CellTypeSex"
cellTypeStr = df["cellType"].iloc[0]
sexStr = df["sex"].iloc[0]
# print('cellTypeStr:', cellTypeStr, 'sexStr:', sexStr)
regSexEncoding = cellTypeStr + sexStr
df[tmpNewCol] = regSexEncoding
minStr = "%.2f" % (theMin)
maxStr = "%.2f" % (theMax)
minStr = minStr.replace(".", "_")
maxStr = maxStr.replace(".", "_")
# TODO: bytestreams are not strictly from a hdd folder or file
fileName = self.ba.fileLoader.filename
if fileName is not None:
fileName, tmpExt = os.path.splitext(fileName)
analysisName = fileName + "_s" + minStr + "_s" + maxStr
# print(' minStr:', minStr, 'maxStr:', maxStr, 'analysisName:', analysisName)
else:
analysisName = "bytestream"
df["analysisname"] = analysisName
return df
def report3(self, sweep='All',
epoch='All',
theMin : Optional[float] = None,
theMax : Optional[float] = None,
) -> pd.DataFrame:
"""Generate a full report of all spike columns.
Like what is save in csv but limited by sweep, epoch, etc
"""
if self.ba.numSpikes == 0:
logger.warning(f"did not find and spikes for summary")
return None
df = self.ba.asDataFrame() # full df with all spikes
spikeList = self.ba.getStat('spikeNumber', sweepNumber=sweep, epochNumber=epoch)
# reduce to spikes in list
df = df.loc[df['spikeNumber'].isin(spikeList)]
if theMin is not None and theMax is not None:
df = df[ (df['thresholdSec']>=theMin) & (df['thresholdSec']<theMax)]
return df
def report2(self, sweep='All',
epoch='All',
theMin : Optional[float] = None,
theMax : Optional[float] = None,
) -> pd.DataFrame:
"""Generate a human readable report of spikes.
Include spike times between theMin and theMax (Sec).
Args:
sweep ('All' or int') : 'All' for all sweeps or int for one sweep
epoch ('All' or int) : 'All' for all epochs or int for one epoch
theMin (float): Start seconds to save, inclusive
theMax (float): Stop seconds to save, inclusive
Returns:
df: pd.DataFrame
"""
spikeList = self.ba.getStat('spikeNumber', sweepNumber=sweep, epochNumber=epoch)
newList = []
for spikeIdx in spikeList:
spike = self.ba.getOneSpikeDict(spikeIdx)
# if current spike time is out of bounds
# then continue (e.g. it is not between theMin (sec) and theMax (sec)
spikeTime_sec = self.ba.fileLoader.pnt2Sec_(spike["thresholdPnt"])
if theMin is not None and theMax is not None:
if spikeTime_sec < theMin or spikeTime_sec > theMax:
continue
spikeDict = (
OrderedDict()
) # use OrderedDict so Pandas output is in the correct order
spikeDict["Spike"] = spikeIdx
spikeDict["Take Off Potential (s)"] = self.ba.fileLoader.pnt2Sec_(
spike["thresholdPnt"]
)
spikeDict["Take Off Potential (ms)"] = self.ba.fileLoader.pnt2Ms_(
spike["thresholdPnt"]
)
spikeDict["Take Off Potential (mV)"] = spike["thresholdVal"]
spikeDict["AP Peak (ms)"] = self.ba.fileLoader.pnt2Ms_(spike["peakPnt"])
spikeDict["AP Peak (mV)"] = spike["peakVal"]
spikeDict["AP Height (mV)"] = spike["peakHeight"]
spikeDict["Pre AP Min (mV)"] = spike["preMinVal"]
# spikeDict['Post AP Min (mV)'] = spike['postMinVal']
#
# spikeDict['AP Duration (ms)'] = spike['apDuration_ms']
spikeDict["Early Diastolic Duration (ms)"] = spike[
"earlyDiastolicDuration_ms"
]
spikeDict["Early Diastolic Depolarization Rate (dV/s)"] = spike[
"earlyDiastolicDurationRate"
] # abb 202012
spikeDict["Diastolic Duration (ms)"] = spike["diastolicDuration_ms"]
#
spikeDict["Inter-Spike-Interval (ms)"] = spike["isi_ms"]
spikeDict["Spike Frequency (Hz)"] = spike["spikeFreq_hz"]
spikeDict["ISI (ms)"] = spike["isi_ms"]
spikeDict["Cycle Length (ms)"] = spike["cycleLength_ms"]
spikeDict["Max AP Upstroke (dV/dt)"] = spike["preSpike_dvdt_max_val2"]
spikeDict["Max AP Upstroke (mV)"] = spike["preSpike_dvdt_max_val"]
spikeDict["Max AP Repolarization (dV/dt)"] = spike[
"postSpike_dvdt_min_val2"
]
spikeDict["Max AP Repolarization (mV)"] = spike["postSpike_dvdt_min_val"]
# half-width
for widthDict in spike["widths"]:
keyName = "width_" + str(widthDict["halfHeight"])
spikeDict[keyName] = widthDict["widthMs"]
spikeDict["File"] = self.ba.fileLoader.filename
# errors
# spikeDict['numError'] = spike['numError']
spikeDict["errors"] = spike["errors"]
# append
newList.append(spikeDict)
df = pd.DataFrame(newList)
return df
def getSummary(self,
sweep='All',
epoch='All',
theMin: float = None,
theMax: float = None
) -> pd.DataFrame:
"""Get analysis summary as df.
This adds some header information to spike report bExport.report2().
"""
if self.ba.numSpikes == 0:
logger.warning(f"did not find and spikes for summary")
return None
# if theMin is None or theMax is None:
# theMin = 0
# theMax = self.ba.fileLoader.recordingDur
#
# cardiac style analysis to sheet 'cardiac'
# human readable columns
cardiac_df = self.report2(sweep=sweep,
epoch=epoch,
theMin=theMin,
theMax=theMax)
dDict = self.ba.getDetectionDict()
#
# header sheet
headerDict = OrderedDict()
filePath, fileName = os.path.split(self.ba.fileLoader.filepath)
headerDict["File Name"] = [fileName]
headerDict["File Path"] = [filePath]
headerDict["Cell Type"] = [dDict["cellType"]]
headerDict["Sex"] = [dDict["sex"]]
headerDict["Condition"] = [dDict["condition"]]
headerDict["Date Analyzed"] = [
self.ba.analysisDate
] # pulled from first detected spike
headerDict["Time Analyzed"] = [self.ba.analysisTime]
headerDict["Detection Type"] = [dDict["detectionType"]]
headerDict["dV/dt Threshold"] = [dDict["dvdtThreshold"]]
# headerDict['mV Threshold'] = [self.ba.mvThreshold] # abb 202012
headerDict["Vm Threshold (mV)"] = [dDict["mvThreshold"]]
# headerDict['Median Filter (pnts)'] = [self.ba.medianFilter]
headerDict["Analysis Version"] = [sanpy.analysisVersion]
headerDict["Interface Version"] = [sanpy.interfaceVersion]
# headerDict['Analysis Start (sec)'] = [self.ba.startSeconds]
# headerDict['Analysis Stop (sec)'] = [self.ba.stopSeconds]
headerDict["Sweep Number"] = ["Default 0"] # [self.ba.currentSweep]
headerDict["Number of Sweeps"] = [self.ba.fileLoader.numSweeps]
headerDict["Export Start (sec)"] = [
float("%.2f" % (theMin))
] # on export, x-axis of raw plot will be ouput
headerDict["Export Stop (sec)"] = [
float("%.2f" % (theMax))
] # on export, x-axis of raw plot will be ouput
# 'stats' has xxx columns (name, mean, sd, se, n)
headerDict["stats"] = []
ignoreColumns = ["Spike", "File"]
for idx, col in enumerate(cardiac_df):
if col in ignoreColumns:
# in general, skip non numerical columns
continue
headerDict[col] = []
# mean
theMean = cardiac_df.mean(numeric_only=True) # skipna default is True
logger.info('cardiac_df:')
print(cardiac_df)
logger.info('theMean:')
print(theMean)
theMean["errors"] = ""
# sd
theSD = cardiac_df.std(numeric_only=True) # skipna default is True
theSD["errors"] = ""
# se
theSE = cardiac_df.sem(numeric_only=True) # skipna default is True
theSE["errors"] = ""
# n
theN = cardiac_df.count(numeric_only=True) # skipna default is True
theN["errors"] = ""
statCols = ["mean", "sd", "se", "n"]
for j, stat in enumerate(statCols):
if j == 0:
pass
else:
# need to append columns to keep Excel sheet columns in sync
# for k,v in headerDict.items():
# headerDict[k].append('')
headerDict["File Name"].append("")
headerDict["File Path"].append("")
headerDict["Cell Type"].append("")
headerDict["Sex"].append("")
headerDict["Condition"].append("")
#
headerDict["Date Analyzed"].append("")
headerDict["Time Analyzed"].append("")
headerDict["Detection Type"].append("")
headerDict["dV/dt Threshold"].append("")
headerDict["Vm Threshold (mV)"].append("")
# headerDict['Median Filter (pnts)'].append('')
headerDict["Analysis Version"].append("")
headerDict["Interface Version"].append("")
headerDict["Sweep Number"].append("")
headerDict["Number of Sweeps"].append("")
headerDict["Export Start (sec)"].append("")
headerDict["Export Stop (sec)"].append("")
# a dictionary key for each stat
headerDict["stats"].append(stat)
for idx, col in enumerate(cardiac_df):
if col in ignoreColumns:
# in general, need to ignore string columns
# headerDict[col].append('')
continue
# headerDict[col].append('')
if stat == "mean":
headerDict[col].append(theMean[col])
elif stat == "sd":
headerDict[col].append(theSD[col])
elif stat == "se":
headerDict[col].append(theSE[col])
elif stat == "n":
headerDict[col].append(theN[col])
# end for j, stat
# print('=== headerDict')
# for k,v in headerDict.items():
# print(k, ':', v)
# dict to pandas dataframe
df = pd.DataFrame(headerDict).T
df.insert(0, "", headerDict.keys(), allow_duplicates=True)
return df
def saveReport(
self,
savefile,
theMin=None,
theMax=None,
saveExcel=True,
alsoSaveTxt=True,
verbose=True,
):
"""
Save a spike report for detected spikes between theMin (sec) and theMax (sec).
This is used by main interface 'Export Spike Report'
Args:
savefile (str): path to xlsx file
theMin (float): start/stop seconds of the analysis
theMax (float): start/stop seconds of the analysis
saveExcel (bool):
alsoSaveTxt (bool):
Return:
str: analysisName
df: df
"""
if theMin is None or theMax is None:
theMin = 0
theMax = self.ba.fileLoader.recordingDur
# always grab a df to the entire analysis (not sure what I will do with this)
# df = self.ba.report() # report() is my own 'bob' verbiage
theRet = None
logger.warning("NEVER SAVING EXCEL !!! dec 2022")
saveExcel = False
if saveExcel and savefile:
# if verbose: print(' bExport.saveReport() saving user specified .xlsx file:', savefile)
excelFilePath = savefile
writer = pd.ExcelWriter(excelFilePath, engine="xlsxwriter")
#
# cardiac style analysis to sheet 'cardiac'
cardiac_df = self.report2(theMin, theMax) # report2 is more 'cardiac'
dDict = self.ba.getDetectionDict()
dateAnalyzed = self.ba.dateAnalyzed
timeAnalyzed = self.ba.dateAnalyzed
#
# header sheet
headerDict = OrderedDict()
filePath, fileName = os.path.split(self.ba.filepath)
headerDict["File Name"] = [fileName]
headerDict["File Path"] = [filePath]
headerDict["Cell Type"] = [dDict["cellType"]]
headerDict["Sex"] = [dDict["sex"]]
headerDict["Condition"] = [dDict["condition"]]
# todo: get these params in ONE dict inside self.ba
# dateAnalyzed, timeAnalyzed = self.ba.dateAnalyzed.split(' ')
headerDict["Date Analyzed"] = [dateAnalyzed]
headerDict["Time Analyzed"] = [timeAnalyzed]
headerDict["Detection Type"] = [dDict["detectionType"]]
headerDict["dV/dt Threshold"] = [dDict["dvdtThreshold"]]
# headerDict['mV Threshold'] = [self.ba.mvThreshold] # abb 202012
headerDict["Vm Threshold (mV)"] = [dDict["mvThreshold"]]
# headerDict['Median Filter (pnts)'] = [self.ba.medianFilter]
headerDict["Analysis Version"] = [sanpy.analysisVersion]
headerDict["Interface Version"] = [sanpy.interfaceVersion]
# headerDict['Analysis Start (sec)'] = [self.ba.startSeconds]
# headerDict['Analysis Stop (sec)'] = [self.ba.stopSeconds]
headerDict["Sweep Number"] = ["Default 0"] # [self.ba.currentSweep]
headerDict["Number of Sweeps"] = [self.ba.fileLoader.numSweeps]
headerDict["Export Start (sec)"] = [
float("%.2f" % (theMin))
] # on export, x-axis of raw plot will be ouput
headerDict["Export Stop (sec)"] = [
float("%.2f" % (theMax))
] # on export, x-axis of raw plot will be ouput
# 'stats' has xxx columns (name, mean, sd, se, n)
headerDict["stats"] = []
ignoreColumns = ["Spike", "File"]
for idx, col in enumerate(cardiac_df):
if col in ignoreColumns:
# in general, need to ignore string columns
# headerDict[col].append('')
continue
headerDict[col] = []
# mean
theMean = cardiac_df.mean() # skipna default is True
theMean["errors"] = ""
# sd
theSD = cardiac_df.std() # skipna default is True
theSD["errors"] = ""
# se
theSE = cardiac_df.sem() # skipna default is True
theSE["errors"] = ""
# n
theN = cardiac_df.count() # skipna default is True
theN["errors"] = ""
statCols = ["mean", "sd", "se", "n"]
for j, stat in enumerate(statCols):
if j == 0:
pass
else:
# need to append columns to keep Excel sheet columns in sync
# for k,v in headerDict.items():
# headerDict[k].append('')
headerDict["File Name"].append("")
headerDict["File Path"].append("")
headerDict["Cell Type"].append("")
headerDict["Sex"].append("")
headerDict["Condition"].append("")
#
headerDict["Date Analyzed"].append("")
headerDict["Time Analyzed"].append("")
headerDict["Detection Type"].append("")
headerDict["dV/dt Threshold"].append("")
headerDict["Vm Threshold (mV)"].append("")
# headerDict['Median Filter (pnts)'].append('')
headerDict["Analysis Version"].append("")
headerDict["Interface Version"].append("")
headerDict["Sweep Number"].append("")
headerDict["Number of Sweeps"].append("")
headerDict["Export Start (sec)"].append("")
headerDict["Export Stop (sec)"].append("")
# a dictionary key for each stat
headerDict["stats"].append(stat)
for idx, col in enumerate(cardiac_df):
if col in ignoreColumns:
# in general, need to ignore string columns
# headerDict[col].append('')
continue
# headerDict[col].append('')
if stat == "mean":
headerDict[col].append(theMean[col])
elif stat == "sd":
headerDict[col].append(theSD[col])
elif stat == "se":
headerDict[col].append(theSE[col])
elif stat == "n":
headerDict[col].append(theN[col])
# print(headerDict)
# for k,v in headerDict.items():
# print(k, v)
# dict to pandas dataframe
df = pd.DataFrame(headerDict).T
df.to_excel(writer, sheet_name="summary")
# set the column widths in excel sheet 'cardiac'
columnWidth = 25
worksheet = writer.sheets["summary"] # pull worksheet object
for idx, col in enumerate(df): # loop through all columns
worksheet.set_column(idx, idx, columnWidth) # set column width
#
# 'params' sheet with all detection params
# need to convert list values in dict to string (o.w. we get one row per item in list)
exportDetectionDict = {}
for k, v in dDict.items():
# v is a dict from bDetection
if isinstance(v, list):
v = f'"{v}"'
exportDetectionDict[k] = v
# print(' === "params" sheet exportDetectionDict:', exportDetectionDict)
# df = pd.DataFrame(exportDetectionDict, index=[0]).T # index=[0] needed when dict has all scalar values
detection_df = pd.DataFrame(exportDetectionDict).T
detection_df.to_excel(writer, sheet_name="params")
# worksheet is <class 'xlsxwriter.worksheet.Worksheet'>
worksheet = writer.sheets["params"] # pull worksheet object
# set first 20 columns to columnWidth
columnWidth = 18
startCol = 0
stopCol = 20 # xlswriter.worksheet does not care about the stop column
worksheet.set_column(0, stopCol, columnWidth) # set column width
#
# 'cardiac' sheet with human readable stat names
cardiac_df.to_excel(writer, sheet_name="cardiac")
# set the column widths in excel sheet 'cardiac'
columnWidth = 20
worksheet = writer.sheets["cardiac"] # pull worksheet object
for idx, col in enumerate(cardiac_df): # loop through all columns
worksheet.set_column(idx, idx, columnWidth) # set column width
#
# mean spike clip
theseClips, theseClips_x, meanClip = self.ba.getSpikeClips(
theMin, theMax, sweepNumber=self.sweepNumber
)
try:
first_X = theseClips_x[0] # - theseClips_x[0][0]
# if verbose: print(' bExport.saveReport() saving mean clip to sheet "Avg Spike" from', len(theseClips), 'clips')
df = pd.DataFrame(meanClip, first_X)
df.to_excel(writer, sheet_name="Avg Spike")
except IndexError as e:
logger.warning("Got bad spike clips. Usually happend when 1-2 spikes")
writer.save()
#
# save a csv text file
#
analysisName = ""
if alsoSaveTxt:
# this also saves
analysisName, df0 = self.getReportDf(theMin, theMax, savefile)
#
# save mean spike clip
not_used_theseClips, theseClips_x, meanClip = self.ba.getSpikeClips(
theMin, theMax, sweepNumber=self.sweepNumber
)
if len(theseClips_x) == 0:
pass
else:
first_X = theseClips_x[0] # - theseClips_x[0][0]
first_X = np.array(first_X)
first_X /= self.ba.fileLoader.dataPointsPerMs # pnts to ms
# if verbose: print(' bExport.saveReport() saving mean clip to sheet "Avg Spike" from', len(theseClips), 'clips')
# dfClip = pd.DataFrame(meanClip, first_X)
dfClip = pd.DataFrame.from_dict({"xMs": first_X, "yVm": meanClip})
# load clip based on analysisname (with start/stop seconds)
analysisname = df0["analysisname"].iloc[
0
] # name with start/stop seconds
logger.info(f"analysisname: {analysisname}")
clipFileName = analysisname + "_clip.csv"
tmpPath, tmpFile = os.path.split(savefile)
tmpPath = os.path.join(tmpPath, "analysis")
# dir is already created in getReportDf
if not os.path.isdir(tmpPath):
os.mkdir(tmpPath)
clipSavePath = os.path.join(tmpPath, clipFileName)
logger.info(f"clipSavePath: {clipSavePath}")
dfClip.to_csv(clipSavePath)
#
theRet = df0
#
return analysisName, theRet
def getReportDf(self, theMin, theMax, savefile):
"""Get spikes as a Pandas DataFrame, one row per spike.
Args:
theMin (float): xxx
theMax (float): xxx
savefile (str): .xls file path
Returns:
df: Pandas DataFrame
"""
filePath, fileName = os.path.split(os.path.abspath(savefile))
dDict = self.ba.getDetectionDict()
# make an analysis folder
filePath = os.path.join(filePath, "analysis")
if not os.path.isdir(filePath):
logger.info(f"Making output folder: {filePath}")
os.mkdir(filePath)
textFileBaseName, tmpExtension = os.path.splitext(fileName)
textFilePath = os.path.join(filePath, textFileBaseName + ".csv")
# save header
textFileHeader = OrderedDict()
textFileHeader["file"] = self.ba.fileLoader.filename
# textFileHeader['condition1'] = self.ba.condition1
# textFileHeader['condition2'] = self.ba.condition2
# textFileHeader['condition3'] = self.ba.condition3
textFileHeader["cellType"] = dDict["cellType"]
textFileHeader["sex"] = dDict["sex"]
textFileHeader["condition"] = dDict["condition"]
#
textFileHeader["dateAnalyzed"] = self.ba.dateAnalyzed
textFileHeader["detectionType"] = dDict["detectionType"]
textFileHeader["dvdtThreshold"] = [dDict["dvdtThreshold"]]
textFileHeader["mvThreshold"] = [dDict["mvThreshold"]]
# textFileHeader['medianFilter'] = self.ba.medianFilter
textFileHeader["startSeconds"] = "%.2f" % (theMin)
textFileHeader["stopSeconds"] = "%.2f" % (theMax)
# textFileHeader['startSeconds'] = self.ba.startSeconds
# textFileHeader['stopSeconds'] = self.ba.stopSeconds
textFileHeader["currentSweep"] = "Default 0" # self.ba.currentSweep
textFileHeader["numSweeps"] = self.ba.fileLoader.numSweeps
# textFileHeader['theMin'] = theMin
# textFileHeader['theMax'] = theMax
# 20210125, this is not needed, we are saviing pandas df below ???
headerStr = ""
for k, v in textFileHeader.items():
headerStr += k + "=" + str(v) + ";"
headerStr += "\n"
# print('headerStr:', headerStr)
with open(textFilePath, "w") as f:
f.write(headerStr)
# df = self.report(theMin, theMax)
df = self.ba.asDataFrame()
# we need a column indicating (path), the original .abf file
# along with (start,stop) which should make this analysis unique?
minStr = "%.2f" % (theMin)
maxStr = "%.2f" % (theMax)
minStr = minStr.replace(".", "_")
maxStr = maxStr.replace(".", "_")
tmpPath, tmpFile = os.path.split(self.ba.fileLoader.filepath)
tmpFile, tmpExt = os.path.splitext(tmpFile)
analysisName = tmpFile + "_s" + minStr + "_s" + maxStr
logger.info(f"minStr:{minStr} maxStr:{maxStr} analysisName:{analysisName}")
df["analysisname"] = analysisName
# should be filled in by self.ba.report
# df['Condition'] = df['condition1']
# df['File Number'] = df['condition2']
# df['Sex'] = df['condition3']
# df['Region'] = df['condition4']
df["filename"] = [
os.path.splitext(os.path.split(x)[1])[0] for x in df["file"].tolist()
]
#
logger.info("saving text file: {textFilePath}")
# df.to_csv(textFilePath, sep=',', index_label='index', mode='a')
df.to_csv(textFilePath, sep=",", index_label="index", mode="w")
return analysisName, df
|