Skip to content

bAnalysis

The bAnalysis class represents a whole-cell recording and provides functions for analysis.

A bAnalysis object can be created in a number of ways: (i) From a file path including .abf and .csv (ii) From a pandas DataFrame when loading from a h5 file. (iii) From a byteStream abf when working in the cloud.

Once loaded, a number of operations can be performed including: Spike detection, Error checking, Plotting, and Saving.

Examples:

path = 'data/19114001.abf'
ba = bAnalysis(path)
dDict = sanpy.bDetection().getDetectionDict('SA Node')
ba.spikeDetect(dDict)
print(ba)
Source code in sanpy/bAnalysis_.py
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
class bAnalysis:
    """
    The bAnalysis class represents a whole-cell recording and provides functions for analysis.

    A bAnalysis object can be created in a number of ways:
    (i) From a file path including .abf and .csv
    (ii) From a pandas DataFrame when loading from a h5 file.
    (iii) From a byteStream abf when working in the cloud.

    Once loaded, a number of operations can be performed including:
    Spike detection, Error checking, Plotting, and Saving.

    Examples:

    ```python
    path = 'data/19114001.abf'
    ba = bAnalysis(path)
    dDict = sanpy.bDetection().getDetectionDict('SA Node')
    ba.spikeDetect(dDict)
    print(ba)
    ```
    """

    # def getNewUuid():
    #     return 't' + str(uuid.uuid4()).replace('-', '_')

    def __init__(
        self,
        filepath: str = None,
        byteStream=None,
        loadData: bool = True,
        fileLoaderDict: dict = None,
        stimulusFileFolder: str = None,
        verbose: bool = False,
    ):
        """
        Args:
            filepath (str): Path to either .abf or .csv with time/mV columns.
            byteStream (io.BytesIO): Binary stream for use in the cloud.
            loadData: If true, load raw data, otherwise just load header
            fileLoaderDict (dict)
                If None then fetch from sanpy.fileloaders.getFileLoaders()
                Do this if running in a script.
                If running an SanPy app, we pass the dict
            stimulusFileFolder:
        """

        """
        self._path = file  # todo: change this to filePath
        """
        """str: File path."""

        self._detectionDict: dict = None  # corresponds to an item in sanpy.bDetection

        # sept 9, moving this to file loader
        # fileloader holds meta data
        #self._metaData = MetaData(self)  #self.getMetaDataDict()

        self._isAnalyzed: bool = False

        self.loadError: bool = False
        """bool: True if error loading file/stream."""

        # self.detectionDict = None  # remember the parameters of our last detection
        """dict: Dictionary specifying detection parameters, see bDetection.getDefaultDetection."""

        # self._abf = None
        """pyAbf: If loaded from binary .abf file"""

        self.dateAnalyzed: str = None
        """str: Date Time of analysis. TODO: make a property."""

        # self.detectionType = None
        """str: From ('dvdt', 'mv')"""

        self.spikeDict: sanpy.bAnalysisResults.analysisResultList = (
            sanpy.bAnalysisResults.analysisResultList()
        )
        # class to store all analysis results

        # self._spikesPerSweep : int = None

        self.spikeClips = []  # created in self.spikeDetect()
        self.spikeClips_x = []  #
        self.spikeClips_x2 = []  #

        self.dfError = None  # dataframe with a list of detection errors
        self._dfReportForScatter = None  # dataframe to be used by scatterplotwidget

        self._detectionDirty = False

        # will be overwritten by existing uuid in self._loadFromDf()
        self.uuid = sanpy._util.getNewUuid()

        # self.tifData = None
        # when we have a tif kymograph

        # self.isBytesIO = False
        # when we are running in the cloud

        # TODO (cudmore) need to parse folder of file loaders in fileloders/ and determine
        # class to use to load file (using fileLoader.filetype
        self._fileLoader = None
        if filepath is not None and not os.path.isfile(filepath):
            logger.error(f'File does not exist: "{filepath}"')
            self.loadError = True
        else:

            if fileLoaderDict is None:
                fileLoaderDict = (
                    sanpy.fileloaders.getFileLoaders()
                )  # EXPENSIVE, to do, pass in from app
            # print('2 fileLoaderDict:', fileLoaderDict)

            # print('1 fileLoaderDict:')
            # for _k,_v in fileLoaderDict.items():
            #     print(_k,_v)

            _ext = os.path.splitext(filepath)[1]
            # _ext = _ext[1:]
            try:
                if verbose:
                    logger.info(f"Loading file with extension: {_ext}")
                constructorObject = fileLoaderDict[_ext]["constructor"]
                self._fileLoader = constructorObject(filepath)
                # may 2, 2023
                if self._fileLoader._loadError:
                    logger.error(f'load error in file loader for ext: "{_ext}"')
                    self.loadError = True

            except KeyError as e:
                logger.error(f'did not find a file loader for extension "{_ext}", available loaders are: {fileLoaderDict.keys()}')
                self.loadError = True

            self._kymAnalysis : sanpy.kymAnalysis = None
            if (self.fileLoader is not None) and (self.fileLoader.recordingMode == recordingModes.kymograph):
                if verbose:
                    logger.info('creating kymAnalysis')
                    logger.info(f'    self.fileLoader.filepath:{self.fileLoader.filepath}')
                    logger.info(f'    self.fileLoader.tifData:{self.fileLoader.tifData.shape}')
                    logger.info(f'    self.fileLoader.tifHeader:{self.fileLoader.tifHeader}')
                self._kymAnalysis = sanpy.kymAnalysis(self.fileLoader.filepath,
                                                      self.fileLoader.tifData,
                                                      self.fileLoader.tifHeader)

            if self._fileLoader is not None:
                # we need to so file loader meta data can set ba (Self) dirty when changed
                self.fileLoader.metadata._ba = self


        """
        if byteStream is not None:
            self._loadAbf(byteStream=byteStream,
                    loadData=loadData,
                    stimulusFileFolder=stimulusFileFolder)
        elif file is not None and file.endswith('.abf'):
            self._loadAbf(loadData=loadData)
        elif file is not None and file.endswith('.atf'):
            self._loadAtf(loadData=loadData)
        elif file is not None and file.endswith('.tif'):
            self._loadTif()
        elif file is not None and file.endswith('.csv'):
            self._loadCsv()
        else:
            pass
            #logger.error(f'Can only open abf/csv/tif/stream files: {file}')
            #self.loadError = True
        """

        # get default derivative
        if loadData and not self.loadError:
            self._rebuildFiltered()

        self._detectionDirty = False

        """
        self.setSweep()
        """

    @property
    def metaData(self):
        # sept 9, moved to file loader
        # return self._metaData
        return self.fileLoader.metadata

    @property
    def kymAnalysis(self):
        """Get the kymAnalysis object (if it exists).
        """
        return self._kymAnalysis

    @property
    def fileLoader(self) -> "sanpy.fileLoader_base":
        """ """
        return self._fileLoader

    def getFileName(self):
        return self.fileLoader.filename

    def asDataFrame(self, regenerateAnalysisDataFrame=False):
        """Return analysis as a Pandas DataFrame.

        Important:
            This is a df copy of our self.spikeDict
            Do not modify and expect changes to stick
        """

        # re-add file metadata, it may have changed
        if regenerateAnalysisDataFrame:
            self.regenerateAnalysisDataFrame()

        return self._dfReportForScatter
        # return self.spikeDict.asDataFrame()

    def getDetectionDict(self, asCopy: bool = False):
        """Get the detection dictionary that was used for detect()."""
        if asCopy:
            return copy.deepcopy(self._detectionDict)
        else:
            return self._detectionDict

    def __str__(self):
        """Get a brief str representation. Usefull for print()."""
        # if self.isBytesIO:
        #      filename = '<BytesIO>'
        # else:
        #     filename = self.getFileName()
        fileLoadStr = self.fileLoader.__str__()
        txt = f"fileLoader: {fileLoadStr} spikes:{self.numSpikes}"
        return txt

    def _saveHdf_pytables(self, hdfPath):
        """Save detection parameters and analysis into an hdf5 file.
        """

        # save kym diameter analysis
        if self._kymAnalysis is not None:
            if self._kymAnalysis.hasDiamAnalysis() and self._kymAnalysis._analysisDirty:
                self._kymAnalysis.saveAnalysis()


        if not self.detectionDirty:
            # Do not save it detection has not changed
            logger.info(f"NOT SAVING, is not dirty {self}")
            return False

        # always save as csv
        self.saveAnalysis_tocsv()

        # when making df from dict, need to pass it a list
        # o.w. key values that are lists get expanded into rows
        if self._detectionDict is not None:
            dfDetection = pd.DataFrame([self._detectionDict])

        dfMetaData = pd.DataFrame([self.metaData])

        # convert spikeList (list of dict) to json
        # spikeList = self.spikeDict.asList()
        # dataJson = json.dumps(spikeList, cls=NumpyEncoder)  # list of dict
        # dfAnalysis = pd.DataFrame(spikeList)
        if len(self.spikeDict) > 0:
            dfAnalysis = self.spikeDict.asDataFrame()

        uuid = self.uuid

        logger.info(
            f"    Saving {self.numSpikes} spikes to uuid {uuid} in h5 file {hdfPath}"
        )

        with pd.HDFStore(hdfPath) as hdfStore:
            if self._detectionDict is not None:
                key = uuid + "/" + "detectionDict"
                dfDetection.to_hdf(hdfStore, key)  # default mode='a'

            # always save meta data
            key = uuid + "/" + "metaDataDict"
            dfMetaData.to_hdf(hdfStore, key)  # default mode='a'

            # logger.warning('=== saving dfMetaData')
            # print(dfMetaData)

            if len(self.spikeDict) > 0:
                key = uuid + "/" + "analysisList"
                dfAnalysis.to_hdf(hdfStore, key)

        # we saved, detection is not dirty
        self._detectionDirty = False

        return True

    def _findUuid(self, hdfPath):
        """Find this analysis uuid in an h5 file. If analysis is not saved, it will not exists.
        """

        # load the database
        detectionDictKey = 'sanpy_recording_db'
        dfDetection = pd.read_hdf(hdfPath, key=detectionDictKey)

        fileList = dfDetection['File'].to_list()

        filename = self.fileLoader.filename
        try:
            idx = fileList.index(filename)
        except (ValueError) as e:
            #logger.warning(f'did not find file {filename} in file list {fileList}')
            return

        uuid = dfDetection['uuid'].to_list()[idx]

        return uuid

    def _loadHdf_pytables(self, hdfPath, uuid = None):
        """Load analysis from an h5 file using key 'uuid'.

        Parameters
        ----------
        hdfPath : str
            path to h5 file
        uuid : uuid
            Unique uuid for the file, if None then will try and find the file in hdfPath

        Notes
        -----
        If uuid is None, this only work for 'flat' directories,
        the ba has to be in same folder as h5 file
        """

        # df.to_dict() requires into=OrderedDict, o.w. column order is sorted
        # Error report needs to be generated (is not in h5 file) use getErrorReport()

        # cant use pd.HDFStore(<path>) as read_hdf does not understand file pointer

        if uuid is None:
            uuid = self._findUuid(hdfPath)
            if uuid is None:
                logger.warning(f'did not find a uuid for {self.fileLoader.filename} in h5 file {hdfPath}')
                logger.warning(f'this usually happens when the analysis was not saved')
                return

        # logger.info(f"loading {uuid} from {hdfPath}")

        # load pandas dataframe(s) from h5 file
        loadedDetection = False
        loadedMetaData = False
        loadedAnalysis = False
        try:
            detectionDictKey = uuid + "/" + "detectionDict"  # group
            dfDetection = pd.read_hdf(hdfPath, detectionDictKey)
            loadedDetection = True
        except KeyError as e:
            logger.error(f'detectionDict: {e}')
            # didLoad = False

        try:
            metaDataDictKey = uuid + "/" + "metaDataDict"  # group
            dfMetaData = pd.read_hdf(hdfPath, metaDataDictKey)
            loadedMetaData = True
        except KeyError as e:
            logger.error(f'metaDataDict: {e}')
            # didLoad = False

        try:
            analysisListKey = uuid + "/" + "analysisList"
            dfAnalysis = pd.read_hdf(hdfPath, analysisListKey)
            loadedAnalysis = True
        except KeyError as e:
            logger.error(f'analysisList: {e}')
            # didLoad = False

        # if didLoad:
        if 1:
            # we take on the uuid we were loaded from
            self.uuid = uuid

            # convert to a dict
            if loadedDetection:
                detectionDict = dfDetection.to_dict("records", into=OrderedDict)[
                    0
                ]  # one dict
                self._detectionDict = detectionDict

            if loadedMetaData:
                # create a child MEtaData object
                #logger.info('creating child MetaData')
                #self.metaData = sanpy.MetaData(self)
                #self.fileLoader.metadata = sanpy.MetaData()

                #metaDataDict = self.metaData.getMetaDataDict()  # default
                metaDataDict = sanpy.MetaData.getMetaDataDict()

                loadedMetaDataDict = dfMetaData.to_dict("records", into=OrderedDict)[
                    0
                ]  # one dict
                # we need to load current meta data dict with all current keys
                # saved file may be out of date

                # bug during implementing meta data code
                # if loadedMetaDataDict['sex'] == '':
                #     loadedMetaDataDict['sex'] = 'unknown'

                # logger.info('loadedMetaDataDict')
                # logger.info(loadedMetaDataDict)

                for k,v in loadedMetaDataDict.items():
                    if not k in metaDataDict.keys():
                        logger.error(f'  did not find loaded meta data key "{k}" in meta data keys {metaDataDict.keys()}')
                        continue
                    metaDataDict[k] = v
                self.metaData.fromDict(metaDataDict, triggerDirty=False)

                # logger.warning(f'LOADED META DATA:')
                # print('self.metaData:', self.metaData)

            # convert to a list of dict
            if loadedAnalysis:
                analysisList = dfAnalysis.to_dict(
                    "records", into=OrderedDict
                )  # list of dict
                self.spikeDict.setFromListDict(analysisList)
                # pprint(analysisList[0])

                # recreate spike analysis dataframe
                # self._dfReportForScatter = dfAnalysis
                self.regenerateAnalysisDataFrame()

                # regenerate error report
                self.dfError = self.getErrorReport()

                # dec 2022
                self._isAnalyzed = True

            # logger.info(
            #     f"    loaded {len(detectionDict.keys())} detection keys and {len(self.spikeDict)} spikes"
            # )
        else:
            logger.error(f"    LOAD FAILED")

    @property
    def detectionDirty(self):
        return self._detectionDirty

    @property
    def numSpikes(self):
        """Get the total number of detected spikes (all sweeps).

        See getNumSpikes(sweep)
        """
        return len(self.spikeDict)  # spikeDict has all spikes for all sweeps

    def getNumSpikes(self, sweep: int = 0):
        """Get number of spikes in a sweep.

        See property numSpikes
        """
        thresholdSec = self.getStat("thresholdSec", sweepNumber=sweep)
        return len(thresholdSec)
        # return self._spikesPerSweep[sweep]

    @property
    def numErrors(self) -> int:
        """Get number of detection errors.
        """
        if self.dfError is None:
            # no analysis
            return None
        else:
            return len(self.dfError)

    def _old_getAbsSpikeFromSweep(self, sweepSpikeIdx: int, sweep: int) -> int:
        """Given a spike index within a sweep, get the absolute spike index.

        See getSweepSpikeFromAbsolute()
        """
        absIdx = 0
        for sweepIdx in range(sweep):
            absIdx += self._spikesPerSweep[sweepIdx]
        absIdx += sweepSpikeIdx
        return absIdx

    def getSweepSpikeFromAbsolute(self, absSpikeIdx: int, sweep: int) -> int:
        """Get sweep spike from absolute spike.

        See getAbsSpikeFromSweep()
        """
        sweepSpikeNum = self.spikeDict[absSpikeIdx]["sweepSpikeNumber"]
        return sweepSpikeNum

        # absIdx = 0
        # for oneSweep in range(sweep):
        #     absIdx += self._spikesPerSweep[oneSweep]
        # sweepSpike = absSpikeIdx - absIdx
        # return sweepSpike

    def isDirty(self):
        """Return True if analysis has been modified but not save."""
        return self._detectionDirty

    def isAnalyzed(self):
        """Return True if this bAnalysis has been analyzed, False otherwise."""
        return self._isAnalyzed

    def getStatMean(self, statName: str, sweepNumber: int = None):
        """
        Get the mean of an analysis parameter.

        Args:
            statName (str): Name of the statistic to retreive.
                For a list of available stats use bDetection.defaultDetection.
        """
        theMean = None
        x = self.getStat(statName, sweepNumber=sweepNumber)
        if x is not None and len(x) > 1:
            theMean = np.nanmean(x)
        return theMean

    def getSpikeStat(self, spikeList : List[int], stat : str):
        """Get one stat from a list of spikes

        Parameters
        ----------
        spikeList : List[int]
        stat : str
        """

        # if isinstance(spikeList, int):
        #     spikeList = [spikeList]

        if len(spikeList) == 0:
            return None

        # logger.info(f'spikeList: {spikeList} stat:{stat}')

        retList = []
        # count = 0
        for idx, spike in enumerate(self.spikeDict):
            # logger.info(f'  idx:{idx}')
            if idx in spikeList:
                try:
                    val = spike[stat]
                    retList.append(val)
                    # count += 1
                except KeyError as e:
                    logger.error(e)
        # logger.info(f'  retList: {retList}')
        return retList

    def setSpikeStat_time(self, startSec: int, stopSec: int, stat: str, value):
        """Set a spike stat for spikes in a range of time."""

        # get spike list in range [startSec, stopSec]
        spikeSeconds = self.getSpikeSeconds()
        spikeList = [
            idx for idx, x in enumerate(spikeSeconds) if x >= startSec and x < stopSec
        ]
        self.setSpikeStat(spikeList, stat, value)

    def setSpikeStat(self, spikeList: Union[list, int], stat: str, value):
        """Set a spike stat for one spike or a list of spikes.

        Used to set things like ('isBad', 'userType1', 'condition', ...)
        """
        if isinstance(spikeList, int):
            spikeList = [spikeList]
            # else:
            #     logger.error(f'Expecting list[int] or int but got spikeList type {type(spikeList)}')
            return

        if len(spikeList) == 0:
            return

        now = datetime.datetime.now()
        modDate = now.strftime("%Y%m%d")
        modTime = now.strftime("%H:%M:%S")

        for spike in spikeList:
            self.spikeDict[spike][stat] = value
            self.spikeDict[spike]["modDate"] = modDate
            self.spikeDict[spike]["modTime"] = modTime

        self._detectionDirty = True

        logger.info(f'set spikes {spikeList} stat "{stat}" to value "{value}"')

        """
        count = 0
        for idx, spike in enumerate(self.spikeDict):
            if idx in spikeList:
                try:
                    spike[stat] = value
                    count += 1
                except (KeyError) as e:
                    logger.info(e)
        #
        logger.info(f'Given {len(spikeList)} and set {count}')
        """

    def _old_getSweepStats(
        self, statName: str, decimals=3, asDataFrame=False, df: pd.DataFrame = None
    ):
        """

        Args:
            df (pd.DataFrame): For kymograph we sometimes have to convert (peak) values to molar
        """

        if df is None:
            df = self.spikeDict.asDataFrame()

        sweepStatList = []

        for sweep in range(self.fileLoader.numSweeps):
            oneDf = df[df["sweep"] == sweep]
            theValues = oneDf[statName]

            theCount = np.count_nonzero(~np.isnan(theValues))
            theMin = np.min(theValues)
            theMax = np.max(theValues)
            theMean = np.nanmean(theValues)

            theMin = round(theMin, decimals)
            theMax = round(theMax, decimals)
            theMean = round(theMean, decimals)

            if theCount > 2:
                theMedian = np.nanmedian(theValues)
                theSEM = scipy.stats.sem(theValues)
                theSD = np.nanstd(theValues)
                theVar = np.nanvar(theValues)
                theCV = theSD / theVar

                theMedian = round(theMedian, decimals)
                theSEM = round(theSEM, decimals)
                theSD = round(theSD, decimals)
                theVar = round(theVar, decimals)
                theCV = round(theCV, decimals)

            else:
                theMedian = None
                theSEM = None
                theSD = None
                theVar = None
                theCV = None

            oneDict = {
                statName + "_sweep": sweep,
                statName + "_count": theCount,
                statName + "_min": theMin,
                statName + "_max": theMax,
                statName + "_mean": theMean,
                statName + "_median": theMedian,
                statName + "_sem": theSEM,
                statName + "_std": theSD,
                statName + "_var": theVar,
                statName + "_cv": theCV,
            }

            sweepStatList.append(oneDict)

        #
        if asDataFrame:
            return pd.DataFrame(sweepStatList)
        else:
            return sweepStatList

    def getStat(
        self,
        statName1,
        statName2: Optional[str] = None,
        sweepNumber: Optional[int] = None,
        epochNumber: Optional[int] = None,
        asArray: Optional[bool] = False,
        getFullList : Optional[bool] = False
    ):
        """Get a list of values for one or two analysis results.

        Parameters
        ----------
        statName1 : str
            Name of the first analysis parameter to retreive.
        statName2 : str
            Optional name of the second analysis parameter to retreive.
        sweepNumber : int str or None
            Optional sweep number, if None or 'All' then get all sweeps
        epochNumber : int str or None
            Optional epoch number, if None or 'All' then get all epochs
        asArray : bool
            If True then return as np.array(), otherwise return as a list

        Notes
        -----
        For a list of available analysis results,
            see [bDetection.getDefaultDetection()][sanpy.bDetection.bDetection]

        If the returned list of analysis results are in points,
            convert to seconds or ms using: pnt2Sec_(pnt) or pnt2Ms_(pnt).

        Returns
        -------
        list or np.array
            List of analysis parameter values, None if error.
            Returns a np.array is asArray is True
        """

        def clean(val):
            """Convert None to float('nan')"""
            if val is None:
                val = float("nan")
            return val

        x = []  # None
        y = []  # None
        error = False
        if len(self.spikeDict) == 0:
            # logger.error(f'Did not find any spikes in spikeDict')
            error = True
        elif statName1 not in self.spikeDict[0].keys():
            logger.error(f'Did not find statName1: "{statName1}" in spikeDict')
            # print('available stat names are:', self.spikeDict[0].keys())
            error = True
        elif statName2 is not None and statName2 not in self.spikeDict[0].keys():
            logger.error(f'Did not find statName2: "{statName2}" in spikeDict')
            error = True

        if sweepNumber is None:
            sweepNumber = "All"

        if epochNumber is None:
            epochNumber = "All"

        if not error:
            # original
            # x = [clean(spike[statName1]) for spike in self.spikeDict]

            if getFullList:
                # April 15, 2023, trying to fix bug in scatter plugin when we are
                # using sweep and epoch
                # strategy is to return all spikes, just nan out the ones we 
                # are not interested in
                x = []
                for spike in self.spikeDict:
                    _include = \
                        (sweepNumber == "All" or spike["sweep"] == sweepNumber) \
                            and (epochNumber == "All" or spike["epoch"] == epochNumber)
                    if _include:
                        x.append(clean(spike[statName1]))
                    else:
                        x.append(float("nan"))

            else:
                # only current sweep and epoch
                # (1) was this
                # was causing errors with kym diam analysis
                x = [
                    clean(spike[statName1])
                    for spike in self.spikeDict
                    if (sweepNumber == "All" or spike["sweep"] == sweepNumber)
                    and (epochNumber == "All" or spike["epoch"] == epochNumber)
                ]
                # for _idx, spike in enumerate(self.spikeDict):
                #     if (sweepNumber == "All" or spike["sweep"] == sweepNumber) and (epochNumber == "All" or spike["epoch"] == epochNumber):
                #         try:
                #             val = spike[statName1]
                #         except (KeyError) as e:
                #             logger.error(f'did not find key "{statName1}" at spike {_idx}')
                #         clean(val)

            if statName2 is not None:
                # original
                # y = [clean(spike[statName2]) for spike in self.spikeDict]
                # only current spweek
                y = [
                    clean(spike[statName2])
                    for spike in self.spikeDict
                    if sweepNumber == "All" or spike["sweep"] == sweepNumber
                ]

        if asArray:
            x = np.array(x)
            if statName2 is not None:
                y = np.array(y)

        if statName2 is not None:
            return x, y
        else:
            return x

    def getSpikeTimes(self, sweepNumber=None, epochNumber='All'):
        """Get spike times (points) for current sweep"""
        # theRet = [spike['thresholdPnt'] for spike in self.spikeDict if spike['sweep']==self.currentSweep]
        theRet = self.getStat("thresholdPnt", sweepNumber=sweepNumber, epochNumber=epochNumber)
        return theRet

    def getSpikeSeconds(self, sweepNumber=None):
        """Get spike times (seconds) for current sweep"""
        # theRet = [spike['thresholdSec'] for spike in self.spikeDict if spike['sweep']==self.currentSweep]
        theRet = self.getStat("thresholdSec", sweepNumber=sweepNumber)
        return theRet

    def getSpikeDictionaries(self, sweepNumber=None):
        """Get spike dictionaries for current sweep
        """
        if sweepNumber is None:
            sweepNumber = "All"
        # logger.info(f'sweepNumber:{sweepNumber}')
        theRet = [
            spike
            for spike in self.spikeDict
            if sweepNumber == "All" or spike["sweep"] == sweepNumber
        ]
        return theRet

    def getOneSpikeDict(self, spikeNumber: int):
        return self.spikeDict[spikeNumber]

    def _rebuildFiltered(self):
        if self.fileLoader.sweepX is None:
            # no data
            logger.warning("not getting derivative ... sweepX was none?")
            return

        if (
            self.fileLoader.recordingMode == recordingModes.iclamp
            or self.fileLoader.recordingMode == recordingModes.kymograph
        ):
            self.fileLoader._getDerivative()
        elif self.fileLoader.recordingMode == recordingModes.vclamp:
            self.fileLoader._getDerivative()
        else:
            logger.warning(
                f'Did not take derivative, unknown recording mode "{self.fileLoader.recordingMode}"'
            )

    def _getFilteredRecording(self):
        """
        Get a filtered version of recording, used for both V-Clamp and I-Clamp.

        Args:
            dDict (dict): Default detection dictionary. See bDetection.defaultDetection
        """

        if self._detectionDict is not None:
            medianFilter = self._detectionDict["medianFilter"]
            SavitzkyGolay_pnts = self._detectionDict["SavitzkyGolay_pnts"]
            SavitzkyGolay_poly = self._detectionDict["SavitzkyGolay_poly"]
        else:
            # we have not been analyzed, impose some defaults
            medianFilter = 0  # no median filter
            SavitzkyGolay_pnts = 5
            SavitzkyGolay_poly = 2

        self.fileLoader._getDerivative(
            medianFilter, SavitzkyGolay_pnts, SavitzkyGolay_poly
        )

        # if medianFilter > 0:
        #     if not medianFilter % 2:
        #         medianFilter += 1
        #         logger.warning(f'Please use an odd value for the median filter, set medianFilter: {medianFilter}')
        #     medianFilter = int(medianFilter)
        #     self._filteredVm = scipy.signal.medfilt2d(self.sweepY(), [medianFilter,1])
        # elif SavitzkyGolay_pnts > 0:
        #     self._filteredVm = scipy.signal.savgol_filter(self.sweepY(),
        #                         SavitzkyGolay_pnts, SavitzkyGolay_poly,
        #                         mode='nearest', axis=0)
        # else:
        #     self._filteredVm = self.sweepY

    def _backupSpikeVm(self, spikeTimes, sweepNumber, medianFilter=None):
        """
        Backup spike time using deminishing SD and diff b/w vm at pnt[i]-pnt[i-1]
        Used when detecting with just mV threshold (not dv/dt)

        Args:
            spikeTimes (list of float):
            medianFilter (int): bin width
        """
        # realSpikeTimePnts = [np.nan] * self.numSpikes
        realSpikeTimePnts = [np.nan] * len(spikeTimes)

        medianFilter = 5
        sweepY = self.fileLoader.sweepY
        if medianFilter > 0:
            myVm = scipy.signal.medfilt(sweepY, medianFilter)
        else:
            myVm = sweepY

        #
        # TODO: this is going to fail if spike is at start/stop of recorrding
        #

        maxNumPntsToBackup = 20  # todo: add _ms
        bin_ms = 1
        bin_pnts = round(bin_ms * self.fileLoader.dataPointsPerMs)
        half_bin_pnts = math.floor(bin_pnts / 2)
        for idx, spikeTimePnts in enumerate(spikeTimes):
            foundRealThresh = False
            thisMean = None
            thisSD = None
            backupNumPnts = 0
            atBinPnt = spikeTimePnts
            while not foundRealThresh:
                thisWin = myVm[atBinPnt - half_bin_pnts : atBinPnt + half_bin_pnts]
                if thisMean is None:
                    thisMean = np.mean(thisWin)
                    thisSD = np.std(thisWin)

                nextStart = atBinPnt - 1 - bin_pnts - half_bin_pnts
                nextStop = atBinPnt - 1 - bin_pnts + half_bin_pnts
                nextWin = myVm[nextStart:nextStop]
                nextMean = np.mean(nextWin)
                nextSD = np.std(nextWin)

                meanDiff = thisMean - nextMean
                # logic
                sdMult = 0.7  # 2
                if (meanDiff < nextSD * sdMult) or (
                    backupNumPnts == maxNumPntsToBackup
                ):
                    # second clause will force us to terminate (this recording has a very slow rise time)
                    # bingo!
                    foundRealThresh = True
                    # not this xxx but the previous
                    moveForwardPnts = 4
                    backupNumPnts = backupNumPnts - 1  # the prev is thresh
                    if backupNumPnts < moveForwardPnts:
                        logger.warning(
                            f"spike {idx} backupNumPnts:{backupNumPnts} < moveForwardPnts:{moveForwardPnts}"
                        )
                        # print('  -->> not adjusting spike time')
                        realBackupPnts = backupNumPnts - 0
                        realPnt = spikeTimePnts - (realBackupPnts * bin_pnts)

                    else:
                        realBackupPnts = backupNumPnts - moveForwardPnts
                        realPnt = spikeTimePnts - (realBackupPnts * bin_pnts)
                    #
                    realSpikeTimePnts[idx] = realPnt

                # increment
                thisMean = nextMean
                thisSD = nextSD

                atBinPnt -= bin_pnts
                backupNumPnts += 1
                """
                if backupNumPnts>maxNumPntsToBackup:
                    print(f'  WARNING: _backupSpikeVm() exiting spike {idx} ... reached maxNumPntsToBackup:{maxNumPntsToBackup}')
                    print('  -->> not adjusting spike time')
                    foundRealThresh = True # set this so we exit the loop
                    realSpikeTimePnts[idx] = spikeTimePnts
                """

        #
        return realSpikeTimePnts

    def _throwOutRefractory(self, spikeTimes0, goodSpikeErrors, refractory_ms=20):
        """
        spikeTimes0: spike times to consider
        goodSpikeErrors: list of errors per spike, can be None
        refractory_ms:
        """
        before = len(spikeTimes0)

        # if there are doubles, throw-out the second one
        # refractory_ms = 20 #10 # remove spike [i] if it occurs within refractory_ms of spike [i-1]
        lastGood = 0  # first spike [0] will always be good, there is no spike [i-1]
        for i in range(len(spikeTimes0)):
            if i == 0:
                # first spike is always good
                continue
            dPoints = spikeTimes0[i] - spikeTimes0[lastGood]
            if dPoints < self.fileLoader.dataPointsPerMs * refractory_ms:
                # remove spike time [i]
                spikeTimes0[i] = 0
            else:
                # spike time [i] was good
                lastGood = i
        # regenerate spikeTimes0 by throwing out any spike time that does not pass 'if spikeTime'
        # spikeTimes[i] that were set to 0 above (they were too close to the previous spike)
        # will not pass 'if spikeTime', as 'if 0' evaluates to False
        if goodSpikeErrors is not None:
            goodSpikeErrors = [
                goodSpikeErrors[idx]
                for idx, spikeTime in enumerate(spikeTimes0)
                if spikeTime
            ]
        spikeTimes0 = [spikeTime for spikeTime in spikeTimes0 if spikeTime]

        # TODO: put back in and log if detection ['verbose']
        after = len(spikeTimes0)
        if self._detectionDict["verbose"]:
            logger.info(
                f"From {before} to {after} spikes with refractory_ms:{refractory_ms}"
            )

        return spikeTimes0, goodSpikeErrors

    def _getHalfWidth(
        self,
        vm,
        iIdx,
        spikeDict,
        thresholdPnt,
        peakPnt,
        hwWindowPnts,
        dataPointsPerMs,
        halfHeightList,
        verbose=False,
    ):
        """
        Get half-widhts for one spike.

        Note: Want to make this standalone function outside of class but we need self._getErrorDict()

        Args:
            vm ():
            iIdx (int):
            spikeDict (): new 20210928
            #dictNumber (int):
            thresholdPnt (int): AP threshold crossing
            peakPnt (int): AP peak
            hwWindowPnts (int): Window to look after peakPnt for falling vm
            dataPointsPerMs (int):
            halfHeightList (list): List of half-height [10,20,50,80,90]
        """

        halfWidthWindow_ms = hwWindowPnts / dataPointsPerMs

        thresholdVal = vm[thresholdPnt]
        peakVal = vm[peakPnt]
        spikeHeight = peakVal - thresholdVal

        spikeSecond = thresholdPnt / dataPointsPerMs / 1000
        peakSec = peakPnt / dataPointsPerMs / 1000

        widthDictList = []
        errorList = []

        # clear out any existing list
        spikeDict[iIdx]["widths"] = []

        tmpErrorType = None
        for j, halfHeight in enumerate(halfHeightList):
            # halfHeight in [20, 50, 80]

            # search rising/falling phae of vm for this vm
            thisVm = thresholdVal + spikeHeight * (halfHeight * 0.01)

            # todo: logic is broken, this get over-written in following try
            widthDict = {
                "halfHeight": halfHeight,
                "risingPnt": None,
                #'risingVal': defaultVal,
                "fallingPnt": None,
                #'fallingVal': defaultVal,
                "widthPnts": None,
                "widthMs": float("nan"),
            }
            widthMs = float("nan")
            try:
                postRange = vm[peakPnt : peakPnt + hwWindowPnts]
                fallingPnt = np.where(postRange < thisVm)[0]  # less than
                if len(fallingPnt) == 0:
                    # no falling pnts found within hwWindowPnts
                    tmpErrorType = "falling point"
                    raise IndexError
                fallingPnt = fallingPnt[0]  # first falling point
                fallingPnt += peakPnt
                fallingVal = vm[fallingPnt]

                # use the post/falling to find pre/rising
                preRange = vm[thresholdPnt:peakPnt]
                risingPnt = np.where(preRange > fallingVal)[0]  # greater than
                if len(risingPnt) == 0:
                    tmpErrorType = "rising point"
                    raise IndexError
                risingPnt = risingPnt[0]  # first rising point
                risingPnt += thresholdPnt
                # risingVal = vm[risingPnt]

                # width (pnts)
                widthPnts = fallingPnt - risingPnt
                widthMs = widthPnts / dataPointsPerMs
                # 20210825 may want to add this to analysis
                # widthPnts2 = fallingPnt - thresholdPnt
                # assign
                widthDict["halfHeight"] = halfHeight
                widthDict["risingPnt"] = risingPnt
                # widthDict['risingVal'] = risingVal
                widthDict["fallingPnt"] = fallingPnt
                # widthDict['fallingVal'] = fallingVal
                widthDict["widthPnts"] = widthPnts
                widthDict["widthMs"] = widthMs
                # widthMs = widthPnts / dataPointsPerMs # abb 20210125

                # may want to add this
                # widthDict['widthPnts2'] = widthPnts2
                # widthDict['widthMs2'] = widthPnts2 / dataPointsPerMs

            except IndexError as e:
                errorType = "Spike Width"
                errorStr = (
                    f'Half width {halfHeight} error in "{tmpErrorType}" '
                    f"with halfWidthWindow_ms:{halfWidthWindow_ms} "
                    f"searching for Vm:{round(thisVm,2)} from peak sec {round(peakSec,2)}"
                )

                # was this
                # eDict = self._getErrorDict(spikeNumber, thresholdPnt, errorType, errorStr) # spikeTime is in pnts
                eDict = self._getErrorDict(
                    iIdx, thresholdPnt, errorType, errorStr
                )  # spikeTime is in pnts
                # self.spikeDict[dictNumber]['errors'].append(eDict)
                spikeDict[iIdx]["errors"].append(eDict)
                if verbose:
                    print(
                        f"_getHalfWidth() error iIdx:{iIdx} j:{j} halfHeight:{halfHeight} eDict:{eDict}"
                    )
            #
            # self.spikeDict[dictNumber]['widths_'+str(halfHeight)] = widthMs
            # self.spikeDict[dictNumber]['widths'][j] = widthDict

            # logger.info('================')
            # print(f'len(spikeDict):{len(spikeDict)} iIdx:{iIdx} j:{j} widthDict:{widthDict}')

            spikeDict[iIdx]["widths_" + str(halfHeight)] = widthMs
            # spikeDict[iIdx]['widths'][j] = widthDict
            spikeDict[iIdx]["widths"].append(widthDict)

        #
        # return widthDictList, errorList

    def _getErrorDict(self, spikeNumber, pnt, _type : str, detailStr) -> dict:
        """Get error dict for one spike

        Notes
        -----
        Can't use self.getSpikeStat() because it is not created yet.
            We are in the middle of analysis
        """
        sec = self.fileLoader.pnt2Sec_(pnt)  # pnt / self.dataPointsPerMs / 1000
        sec = round(sec, 4)

        # print(f'  spikeNumber: {spikeNumber} {type(spikeNumber)}')
        # print('    sweep:', self.getSpikeStat([spikeNumber], 'sweep'))

        eDict = {
            "Spike": spikeNumber,
            "Seconds": sec,
            "Sweep": '',  # self.getSpikeStat([spikeNumber], 'sweep')[0],
            "Epoch": '',  # self.getSpikeStat([spikeNumber], 'epoch')[0],
            "Type": _type,
            "Details": detailStr,
        }
        return eDict

    def _spikeDetect_dvdt(self, dDict: dict, sweepNumber: int, verbose: bool = False):
        """
        Search for threshold crossings (dvdtThreshold) in first derivative (dV/dt) of membrane potential (Vm)
        append each threshold crossing (e.g. a spike) in self.spikeTimes list

        Returns:
            self.spikeTimes (pnts): the time before each threshold crossing when dv/dt crosses 15% of its max
            self.filteredVm:
            self.filtereddVdt:
        """

        #
        # analyze full recording
        filteredDeriv = self.fileLoader.filteredDeriv
        Is = np.where(filteredDeriv > dDict["dvdtThreshold"])[0]
        Is = np.concatenate(([0], Is))
        Ds = Is[:-1] - Is[1:] + 1
        spikeTimes0 = Is[np.where(Ds)[0] + 1]

        #
        # reduce spike times based on start/stop
        # logger.error('THIS IS a BUg if start sec is none then set to 0 !!!')
        # THIS IS ABUG ... FIX
        if dDict["startSeconds"] is not None and dDict["stopSeconds"] is not None:
            startPnt = self.fileLoader.dataPointsPerMs * (
                dDict["startSeconds"] * 1000
            )  # seconds to pnt
            stopPnt = self.fileLoader.dataPointsPerMs * (
                dDict["stopSeconds"] * 1000
            )  # seconds to pnt
            tmpSpikeTimes = [
                spikeTime
                for spikeTime in spikeTimes0
                if (spikeTime >= startPnt and spikeTime <= stopPnt)
            ]
            spikeTimes0 = tmpSpikeTimes

        #
        # throw out all spikes that are below a threshold Vm (usually below -20 mV)
        peakWindow_pnts = self.fileLoader.ms2Pnt_(dDict["peakWindow_ms"])
        # peakWindow_pnts = self.dataPointsPerMs * dDict['peakWindow_ms']
        # peakWindow_pnts = round(peakWindow_pnts)
        goodSpikeTimes = []
        sweepY = self.fileLoader.sweepY
        for spikeTime in spikeTimes0:
            # wu-lab-stanford data
            try:
                peakVal = np.max(sweepY[spikeTime : spikeTime + peakWindow_pnts])
                if peakVal > dDict["mvThreshold"]:
                    goodSpikeTimes.append(spikeTime)
            except (ValueError) as e:
                logger.error(e)
                logger.error(f'   spikeTime:{spikeTime} peakWindow_pnts:{peakWindow_pnts}')
                logger.error(f'   _dataPointsPerMs: {self.fileLoader._dataPointsPerMs}')
        spikeTimes0 = goodSpikeTimes

        #
        # throw out spike that are not upward deflections of Vm
        """
        prePntUp = 7 # pnts
        goodSpikeTimes = []
        for spikeTime in spikeTimes0:
            preAvg = np.average(self.abf.sweepY[spikeTime-prePntUp:spikeTime-1])
            postAvg = np.average(self.abf.sweepY[spikeTime+1:spikeTime+prePntUp])
            #print(preAvg, postAvg)
            if preAvg < postAvg:
                goodSpikeTimes.append(spikeTime)
        spikeTimes0 = goodSpikeTimes
        """

        #
        # if there are doubles, throw-out the second one
        spikeTimeErrors = None
        spikeTimes0, ignoreSpikeErrors = self._throwOutRefractory(
            spikeTimes0, spikeTimeErrors, refractory_ms=dDict["refractory_ms"]
        )

        # logger.warning('REMOVED SPIKE TOP AS % OF DVDT')
        # return spikeTimes0, [None] * len(spikeTimes0)

        #
        # for each threshold crossing, search backwards in dV/dt for a % of maximum (about 10 ms)
        # dvdt_percentOfMax = 0.1
        # window_ms = 2
        window_pnts = dDict["dvdtPreWindow_ms"] * self.fileLoader.dataPointsPerMs
        # abb 20210130 lcr analysis
        window_pnts = round(window_pnts)
        spikeTimes1 = []
        spikeErrorList1 = []
        filteredDeriv = self.fileLoader.filteredDeriv
        for i, spikeTime in enumerate(spikeTimes0):
            # get max in derivative

            preDerivClip = filteredDeriv[
                spikeTime - window_pnts : spikeTime
            ]  # backwards
            postDerivClip = filteredDeriv[
                spikeTime : spikeTime + window_pnts
            ]  # forwards

            if len(preDerivClip) == 0:
                print(
                    "FIX ERROR: spikeDetect_dvdt()",
                    "spike",
                    i,
                    "at pnt",
                    spikeTime,
                    "window_pnts:",
                    window_pnts,
                    "dvdtPreWindow_ms:",
                    dDict["dvdtPreWindow_ms"],
                    "len(preDerivClip)",
                    len(preDerivClip),
                )  # preDerivClip = np.flip(preDerivClip)

            # look for % of max in dvdt
            try:
                # peakPnt = np.argmax(preDerivClip)
                peakPnt = np.argmax(postDerivClip)
                # peakPnt += spikeTime-window_pnts
                peakPnt += spikeTime
                peakVal = filteredDeriv[peakPnt]

                percentMaxVal = (
                    peakVal * dDict["dvdt_percentOfMax"]
                )  # value we are looking for in dv/dt
                preDerivClip = np.flip(preDerivClip)  # backwards
                tmpWhere = np.where(preDerivClip < percentMaxVal)
                # print('tmpWhere:', type(tmpWhere), tmpWhere)
                tmpWhere = tmpWhere[0]
                if len(tmpWhere) > 0:
                    threshPnt2 = np.where(preDerivClip < percentMaxVal)[0][0]
                    threshPnt2 = (spikeTime) - threshPnt2
                    # print('i:', i, 'spikeTime:', spikeTime, 'peakPnt:', peakPnt, 'threshPnt2:', threshPnt2)
                    threshPnt2 -= 1  # backup by 1 pnt
                    spikeTimes1.append(threshPnt2)
                    spikeErrorList1.append(None)

                else:
                    errorType = "dvdt Percent"
                    errStr = f"Did not find dvdt_percentOfMax: {dDict['dvdt_percentOfMax']} peak dV/dt is {round(peakVal,2)}"
                    eDict = self._getErrorDict(
                        i, spikeTime, errorType, errStr
                    )  # spikeTime is in pnts
                    spikeErrorList1.append(eDict)
                    # always append, do not REJECT spike if we can't find % in dv/dt
                    spikeTimes1.append(spikeTime)
            except (IndexError, ValueError) as e:
                ##
                print(
                    "   FIX ERROR: bAnalysis.spikeDetect_dvdt() looking for dvdt_percentOfMax"
                )
                print("      ", "IndexError for spike", i, spikeTime)
                print("      ", e)
                # always append, do not REJECT spike if we can't find % in dv/dt
                spikeTimes1.append(spikeTime)

        return spikeTimes1, spikeErrorList1

    def _spikeDetect_vm(self, dDict: dict, sweepNumber: int, verbose: bool = False):
        """
        spike detect using Vm threshold and NOT dvdt
        append each threshold crossing (e.g. a spike) in self.spikeTimes list

        Returns:
            self.spikeTimes (pnts): the time before each threshold crossing when dv/dt crosses 15% of its max
            self.filteredVm:
            self.filtereddVdt:
        """

        filteredVm = self.fileLoader.sweepY_filtered
        Is = np.where(filteredVm > dDict["mvThreshold"])[0]  # returns boolean array
        Is = np.concatenate(([0], Is))
        Ds = Is[:-1] - Is[1:] + 1
        spikeTimes0 = Is[np.where(Ds)[0] + 1]

        #
        # reduce spike times based on start/stop
        if dDict["startSeconds"] is not None and dDict["stopSeconds"] is not None:
            startPnt = self.fileLoader.dataPointsPerMs * (
                dDict["startSeconds"] * 1000
            )  # seconds to pnt
            stopPnt = self.fileLoader.dataPointsPerMs * (
                dDict["stopSeconds"] * 1000
            )  # seconds to pnt
            tmpSpikeTimes = [
                spikeTime
                for spikeTime in spikeTimes0
                if (spikeTime >= startPnt and spikeTime <= stopPnt)
            ]
            spikeTimes0 = tmpSpikeTimes

        spikeErrorList = [None] * len(spikeTimes0)

        #
        # throw out all spikes that are below a threshold Vm (usually below -20 mV)
        # spikeTimes0 = [spikeTime for spikeTime in spikeTimes0 if self.abf.sweepY[spikeTime] > self.mvThreshold]
        # 20190623 - already done in this vm threshold funtion
        """
        peakWindow_ms = 10
        peakWindow_pnts = self.abf.dataPointsPerMs * peakWindow_ms
        goodSpikeTimes = []
        for spikeTime in spikeTimes0:
            peakVal = np.max(self.abf.sweepY[spikeTime:spikeTime+peakWindow_pnts])
            if peakVal > self.mvThreshold:
                goodSpikeTimes.append(spikeTime)
        spikeTimes0 = goodSpikeTimes
        """

        #
        # throw out spike that are NOT upward deflections of Vm
        tmpLastGoodSpike_pnts = None
        # minISI_pnts = 5000 # at 20 kHz this is 0.25 sec
        minISI_ms = 75  # 250
        minISI_pnts = self.fileLoader.ms2Pnt_(minISI_ms)

        prePntUp = 10  # pnts
        goodSpikeTimes = []
        goodSpikeErrors = []
        sweepY = self.fileLoader.sweepY
        for tmpIdx, spikeTime in enumerate(spikeTimes0):
            tmpFuckPreClip = sweepY[
                spikeTime - prePntUp : spikeTime
            ]  # not including the stop index
            tmpFuckPostClip = sweepY[
                spikeTime + 1 : spikeTime + prePntUp + 1
            ]  # not including the stop index
            preAvg = np.average(tmpFuckPreClip)
            postAvg = np.average(tmpFuckPostClip)
            if postAvg > preAvg:
                # tmpSpikeTimeSec = self.fileLoader.pnt2Sec_(spikeTime)
                if (
                    tmpLastGoodSpike_pnts is not None
                    and (spikeTime - tmpLastGoodSpike_pnts) < minISI_pnts
                ):
                    continue
                goodSpikeTimes.append(spikeTime)
                goodSpikeErrors.append(spikeErrorList[tmpIdx])
                tmpLastGoodSpike_pnts = spikeTime
            else:
                tmpSpikeTimeSec = self.fileLoader.pnt2Sec_(spikeTime)

        # todo: add this to spikeDetect_dvdt()
        goodSpikeTimes, goodSpikeErrors = self._throwOutRefractory(
            goodSpikeTimes, goodSpikeErrors, refractory_ms=dDict["refractory_ms"]
        )
        spikeTimes0 = goodSpikeTimes
        spikeErrorList = goodSpikeErrors

        #
        return spikeTimes0, spikeErrorList

    def spikeDetect(self, detectionDict: dict):
        """Run spike detection for all sweeps.

        Each spike is a row and has 'sweep'

        Args:
            detectionDict: From sanpy.bDetection
        """

        rememberSweep = (
            self.fileLoader.currentSweep
        )  # This is BAD we are mixing analysis with interface !!!

        startTime = time.time()

        #
        # todo: ask user if they want to remove their settings for (isBad, userType)
        #

        self._detectionDict = detectionDict

        if detectionDict["verbose"]:
            logger.info("=== detectionDict is:")
            for k in detectionDict.keys():
                v = detectionDict[k]
                print(f'  {k} value:"{v}" is type {type(v)}')

        self._isAnalyzed = True

        self.spikeDict = sanpy.bAnalysisResults.analysisResultList()
        # we are filling this in, one dict for each spike
        # self.spikeDict = [] # we are filling this in, one dict for each spike

        # self._spikesPerSweep = [0] * self.fileLoader.numSweeps

        for sweepNumber in self.fileLoader.sweepList:
            # self.setSweep(sweep)
            self._spikeDetect2(sweepNumber)

        #
        self.fileLoader.setSweep(rememberSweep)

        stopTime = time.time()

        if detectionDict["verbose"]:
            logger.info(
                f"Detected {len(self.spikeDict)} spikes in {round(stopTime-startTime,3)} seconds"
            )

    def _spikeDetect2(self, sweepNumber: int):
        """Detect all spikes in one sweep.

         Populate bAnalysisResult.py.

        Notes
        -----
        First spike in a sweep cannot have interval statistics like freq or isi

        Parameters
        ----------
        sweepNumber : int
        """
        dDict = self._detectionDict

        # a list of dict of sanpy.bAnalysisResults.analysisResult (one dict per spike)
        spikeDict = sanpy.bAnalysisResults.analysisResultList()

        verbose = dDict["verbose"]

        #
        self.fileLoader.setSweep(sweepNumber)
        #

        # in case dDict has new filter values
        self._getFilteredRecording()

        #
        # spike detect
        detectionType = dDict["detectionType"]

        # detect all spikes either with dvdt or mv
        if detectionType == sanpy.bDetection.detectionTypes["mv"].value:
            # detect using mV threshold
            spikeTimes, spikeErrorList = self._spikeDetect_vm(dDict, sweepNumber)

            # TODO: get rid of this and replace with foot
            # backup childish vm threshold
            if dDict["doBackupSpikeVm"]:
                spikeTimes = self._backupSpikeVm(
                    spikeTimes, sweepNumber, dDict["medianFilter"]
                )
        elif detectionType == sanpy.bDetection.detectionTypes["dvdt"].value:
            # detect using dv/dt threshold AND min mV
            spikeTimes, spikeErrorList = self._spikeDetect_dvdt(dDict, sweepNumber)
        else:
            logger.error(f'Unknown detection type "{detectionType}"')
            return

        #
        # backup thrshold to zero crossing in dvdt
        if 0:
            tmp_window_ms = dDict["dvdtPreWindow_ms"]
            tmp_window_pnts = self.fileLoader.ms2Pnt_(tmp_window_ms)
            spikeTimes = self._getFeet(spikeTimes, tmp_window_pnts)

        #
        # set up
        sweepX = self.fileLoader.sweepX  # sweepNumber is not optional
        filteredVm = self.fileLoader.sweepY_filtered  # sweepNumber is not optional
        filteredDeriv = self.fileLoader.filteredDeriv
        # sweepC = self.fileLoader.sweepC

        #
        now = datetime.datetime.now()
        dateStr = now.strftime("%Y%m%d")
        timeStr = now.strftime("%H:%M:%S")
        self.dateAnalyzed = dateStr

        #
        # look in a window after each threshold crossing to get AP peak
        peakWindow_pnts = self.fileLoader.ms2Pnt_(dDict["peakWindow_ms"])

        #
        # look in a window after each peak to get 'fast ahp'
        fastAhpWindow_pnts = self.fileLoader.ms2Pnt_(dDict["fastAhpWindow_ms"])

        #
        # throw out spikes that have peak BELOW onlyPeaksAbove_mV
        # throw out spikes that have peak ABOVE onlyPeaksBelow_mV
        onlyPeaksAbove_mV = dDict["onlyPeaksAbove_mV"]
        onlyPeaksBelow_mV = dDict["onlyPeaksBelow_mV"]
        (
            spikeTimes,
            spikeErrorList,
            newSpikePeakPnt,
            newSpikePeakVal,
        ) = sanpy.analysisUtil.throwOutAboveBelow(
            filteredVm,
            spikeTimes,
            spikeErrorList,
            peakWindow_pnts,
            onlyPeaksAbove_mV=onlyPeaksAbove_mV,
            onlyPeaksBelow_mV=onlyPeaksBelow_mV,
        )

        #
        # small window to average Vm to calculate MDP (itself in a window before spike)
        avgWindow_pnts = self.fileLoader.ms2Pnt_(dDict["avgWindow_ms"])
        avgWindow_pnts = math.floor(avgWindow_pnts / 2)  # can be 0 !!!

        #
        # for each spike
        # numSpikes = len(spikeTimes)
        for i, spikeTime in enumerate(spikeTimes):
            # spikeTime units is ALWAYS points

            # new, add a spike dict for this spike time
            spikeDict.appendDefault()

            # get the AP peak
            peakPnt = newSpikePeakPnt[i]
            peakVal = newSpikePeakVal[i]
            peakSec = (newSpikePeakPnt[i] / self.fileLoader.dataPointsPerMs) / 1000

            # create one spike dictionary
            # spikeDict = OrderedDict() # use OrderedDict so Pandas output is in the correct order

            # spikeDict[i]['isBad'] = False
            spikeDict[i]["analysisDate"] = dateStr
            spikeDict[i]["analysisTime"] = timeStr
            spikeDict[i]["analysisVersion"] = sanpy.analysisVersion
            spikeDict[i]["interfaceVersion"] = sanpy.interfaceVersion
            spikeDict[i]["file"] = self.fileLoader.filename

            spikeDict[i]["detectionType"] = detectionType

            spikeDict[i]["cellType"] = dDict["cellType"]
            spikeDict[i]["sex"] = dDict["sex"]
            spikeDict[i]["condition"] = dDict["condition"]

            spikeDict[i]["sweep"] = sweepNumber

            epoch = float("nan")
            epochLevel = float("nan")
            epochTable = self.fileLoader.getEpochTable(sweepNumber)
            if epochTable is not None:
                epoch = epochTable.findEpoch(spikeTime)
                epochLevel = epochTable.getLevel(epoch)
            spikeDict[i]["epoch"] = epoch
            spikeDict[i]["epochLevel"] = epochLevel

            # keep track of per sweep spike and total spike
            spikeDict[i]["sweepSpikeNumber"] = i
            spikeDict[i]["spikeNumber"] = self.numSpikes + i

            spikeDict[i]["include"] = True

            # todo: make this a byte encoding so we can have multiple user tyes per spike
            spikeDict[i]["userType"] = 0  # One userType (int) that can have values

            # using bAnalysisResults will already be []
            spikeDict[i]["errors"] = []

            # append existing spikeErrorList from spikeDetect_dvdt() or spikeDetect_mv()
            tmpError = spikeErrorList[i]
            if tmpError is not None and tmpError != np.nan:
                spikeDict[i]["errors"].append(tmpError)  # tmpError is from:
                if verbose:
                    print(f"  spike:{i} error:{tmpError}")
            #
            # detection params
            spikeDict[i]["dvdtThreshold"] = dDict["dvdtThreshold"]
            spikeDict[i]["mvThreshold"] = dDict["mvThreshold"]
            spikeDict[i]["medianFilter"] = dDict["medianFilter"]
            spikeDict[i]["halfHeights"] = dDict["halfHeights"]

            spikeDict[i]["thresholdPnt"] = spikeTime
            spikeDict[i]["thresholdSec"] = (
                spikeTime / self.fileLoader.dataPointsPerMs
            ) / 1000
            spikeDict[i]["thresholdVal"] = filteredVm[spikeTime]  # in vm
            spikeDict[i]["thresholdVal_dvdt"] = filteredDeriv[
                spikeTime
            ]  # in dvdt, spikeTime is points

            # TODO: revamp this for 'Plot FI' plugin
            # spikeTime falls into wrong epoch for first fast spike
            # DAC command at the precise spike point
            # spikeDict[i]['dacCommand'] = sweepC[spikeTime]  # spikeTime is in points
            # spikeDict[i]['dacCommand'] = sweepC[peakPnt]  # spikeTime is in points

            spikeDict[i]["peakPnt"] = peakPnt
            spikeDict[i]["peakSec"] = peakSec
            spikeDict[i]["peakVal"] = peakVal

            spikeDict[i]["peakHeight"] = (
                spikeDict[i]["peakVal"] - spikeDict[i]["thresholdVal"]
            )

            tmpThresholdSec = spikeDict[i]["thresholdSec"]
            spikeDict[i]["timeToPeak_ms"] = (peakSec - tmpThresholdSec) * 1000

            # only append to spikeDict after we are done (accounting for spikes within a sweep)
            # self.spikeDict.append(spikeDict)
            # iIdx = len(self.spikeDict) - 1

            iIdx = i

            # fast ahp, fastAhpWindow_pnts
            if peakPnt+fastAhpWindow_pnts < len(sweepX):
                fastAhpClip = filteredVm[peakPnt : peakPnt+fastAhpWindow_pnts]
                fastAhpPnt = np.argmin(fastAhpClip)

                fastAhpError = fastAhpPnt == len(fastAhpClip)-1

                fastAhpPnt += peakPnt
                fastAhpSec = self.fileLoader.pnt2Sec_(fastAhpPnt)
                fastAhpValue = filteredVm[fastAhpPnt]

                spikeDict[i]["fastAhpPnt"] = fastAhpPnt
                spikeDict[i]["fastAhpSec"] = fastAhpSec
                spikeDict[i]["fastAhpValue"] = fastAhpValue

                # log error
                if fastAhpError:
                    errorType = "Fast AHP was detected at end of fast AHP window"
                    errorStr = "Consider increasing the fast AHP window with fastAhpWindow_ms"
                    eDict = self._getErrorDict(
                        i, spikeTimes[i], errorType, errorStr
                    )  # spikeTime is in pnts
                    spikeDict[iIdx]["errors"].append(eDict)

            # todo: get rid of this
            defaultVal = float("nan")

            """
            # get pre/post spike minima
            self.spikeDict[iIdx]['preMinPnt'] = None
            self.spikeDict[iIdx]['preMinVal'] = defaultVal

            # early diastolic duration
            # 0.1 to 0.5 of time between pre spike min and spike time
            self.spikeDict[iIdx]['preLinearFitPnt0'] = None
            self.spikeDict[iIdx]['preLinearFitPnt1'] = None
            self.spikeDict[iIdx]['earlyDiastolicDuration_ms'] = defaultVal # seconds between preLinearFitPnt0 and preLinearFitPnt1
            self.spikeDict[iIdx]['preLinearFitVal0'] = defaultVal
            self.spikeDict[iIdx]['preLinearFitVal1'] = defaultVal
            # m,b = np.polyfit(x, y, 1)
            self.spikeDict[iIdx]['earlyDiastolicDurationRate'] = defaultVal # fit of y=preLinearFitVal 0/1 versus x=preLinearFitPnt 0/1
            self.spikeDict[iIdx]['lateDiastolicDuration'] = defaultVal #

            self.spikeDict[iIdx]['preSpike_dvdt_max_pnt'] = None
            self.spikeDict[iIdx]['preSpike_dvdt_max_val'] = defaultVal # in units mV
            self.spikeDict[iIdx]['preSpike_dvdt_max_val2'] = defaultVal # in units dv/dt
            self.spikeDict[iIdx]['postSpike_dvdt_min_pnt'] = None
            self.spikeDict[iIdx]['postSpike_dvdt_min_val'] = defaultVal # in units mV
            self.spikeDict[iIdx]['postSpike_dvdt_min_val2'] = defaultVal # in units dv/dt

            self.spikeDict[iIdx]['isi_pnts'] = defaultVal # time between successive AP thresholds (thresholdSec)
            self.spikeDict[iIdx]['isi_ms'] = defaultVal # time between successive AP thresholds (thresholdSec)
            self.spikeDict[iIdx]['spikeFreq_hz'] = defaultVal # time between successive AP thresholds (thresholdSec)
            self.spikeDict[iIdx]['cycleLength_pnts'] = defaultVal # time between successive MDPs
            self.spikeDict[iIdx]['cycleLength_ms'] = defaultVal # time between successive MDPs

            # Action potential duration (APD) was defined as the interval between the TOP and the subsequent MDP
            #self.spikeDict[iIdx]['apDuration_ms'] = defaultVal
            self.spikeDict[iIdx]['diastolicDuration_ms'] = defaultVal

            # any number of spike widths
            #print('spikeDetect__() appending widths list to spike iIdx:', iIdx)
            # was this
            #self.spikeDict[iIdx]['widths'] = []
            # debug 20210929, self._getHalfWidth() will assign spikeDict[iIdx]['widths'] = []
            for halfHeight in dDict['halfHeights']:
                widthDict = {
                    'halfHeight': halfHeight,
                    'risingPnt': None,
                    'risingVal': defaultVal,
                    'fallingPnt': None,
                    'fallingVal': defaultVal,
                    'widthPnts': None,
                    'widthMs': defaultVal
                }
                # was this
                #spikeDict[iIdx]['widths_' + str(halfHeight)] = defaultVal
                spikeDict[iIdx]['widths'].append(widthDict)
            """

            #
            mdp_ms = dDict["mdp_ms"]
            mdp_pnts = self.fileLoader.ms2Pnt_(mdp_ms)  # mdp_ms * self.dataPointsPerMs
            mdp_pnts = int(mdp_pnts)

            # pre spike min
            # other algorithms look between spike[i-1] and spike[i]
            # here we are looking in a predefined window
            startPnt = spikeTimes[i] - mdp_pnts
            if startPnt < 0:
                # logger.info('TODO: add an official warning, we went past 0 for pre spike mdp ms window')
                startPnt = 0
                # log error
                errorType = "Pre spike min under-run (mdp)"
                errorStr = "Went past startPnt 0 searching for pre-spike min"
                eDict = self._getErrorDict(
                    i, spikeTimes[i], errorType, errorStr
                )  # spikeTime is in pnts
                spikeDict[iIdx]["errors"].append(eDict)
                if verbose:
                    logger.error(f"  spike:{iIdx} error:{eDict}")
                    logger.error(f'  going to index vmFiltered {startPnt} to spike time i {i} with value {spikeTimes[i]}')

            preRange = filteredVm[startPnt : spikeTimes[i]]  # EXCEPTION
            try:
                preMinPnt = np.argmin(preRange)
            except ValueError as e:
                # 20220926, happend when we have no scale and mdp_pnts=0
                # print(f'xxx i:{i} mdp_pnts:{mdp_pnts} len:{len(filteredVm)} startPnt:{startPnt} spikeTimes[i]:{spikeTimes[i]}')
                # 20220926, we really just want ot bail on this error
                # lots of code below relies on this
                # TODO: fix this mess
                preMinPnt = startPnt
                errorType = "Pre spike min 0 (mdp)"
                errorStr = f"Did not find preMinPnt mdp_pnts:{mdp_pnts} startPnt:{startPnt} spikeTimes[i]:{spikeTimes[i]}"
                eDict = self._getErrorDict(
                    i, spikeTimes[i], errorType, errorStr
                )  # spikeTime is in pnts
                spikeDict[iIdx]["errors"].append(eDict)
                if verbose:
                    print(f"  spike:{iIdx} error:{eDict}")
            if preMinPnt is not None:
                # 20230924, avgMinPnts is coming up zero now that we have sampling dt for kymographs that are slow !!!
                if avgWindow_pnts < 1:
                    # error
                    errorType = "mdp error"
                    errorStr = "avgWindow_pnts"
                    eDict = self._getErrorDict(
                        i, spikeTimes[i], errorType, errorStr
                    )  # spikeTime is in pnts
                    spikeDict[iIdx]["errors"].append(eDict)
                    if verbose:
                        print(f"  spike:{iIdx} error:{eDict}")

                else:
                    preMinPnt += startPnt
                    # the pre min is actually an average around the real minima
                    avgRange = filteredVm[
                        preMinPnt - avgWindow_pnts : preMinPnt + avgWindow_pnts
                    ]
                    # print('  avgRange is:' , avgRange)
                    preMinVal = np.average(avgRange)

                    # search backward from spike to find when vm reaches preMinVal (avg)
                    preRange = filteredVm[preMinPnt : spikeTimes[i]]
                    preRange = np.flip(preRange)  # we want to search backwards from peak
                    try:
                        preMinPnt2 = np.where(preRange < preMinVal)[0][0]
                        preMinPnt = spikeTimes[i] - preMinPnt2
                        spikeDict[iIdx]["preMinPnt"] = preMinPnt
                        spikeDict[iIdx]["preMinVal"] = preMinVal

                    except IndexError as e:
                        errorType = "Pre spike min (mdp)"
                        errorStr = "Did not find preMinVal: " + str(
                            round(preMinVal, 3)
                        )  # + ' postRange min:' + str(np.min(postRange)) + ' max ' + str(np.max(postRange))
                        eDict = self._getErrorDict(
                            i, spikeTimes[i], errorType, errorStr
                        )  # spikeTime is in pnts
                        spikeDict[iIdx]["errors"].append(eDict)
                        if verbose:
                            print(f"  spike:{iIdx} error:{eDict}")

            #
            # The nonlinear late diastolic depolarization phase was
            # estimated as the duration between 1% and 10% dV/dt
            # linear fit on 10% - 50% of the time from preMinPnt to self.spikeTimes[i]
            startLinearFit = 0.1  # percent of time between pre spike min and AP peak
            stopLinearFit = 0.5  #
            timeInterval_pnts = spikeTimes[i] - preMinPnt
            # taking round() so we always get an integer # points
            preLinearFitPnt0 = preMinPnt + round(timeInterval_pnts * startLinearFit)
            preLinearFitPnt1 = preMinPnt + round(timeInterval_pnts * stopLinearFit)
            preLinearFitVal0 = filteredVm[preLinearFitPnt0]
            preLinearFitVal1 = filteredVm[preLinearFitPnt1]

            # linear fit before spike
            spikeDict[iIdx]["preLinearFitPnt0"] = preLinearFitPnt0
            spikeDict[iIdx]["preLinearFitPnt1"] = preLinearFitPnt1
            spikeDict[iIdx]["earlyDiastolicDuration_ms"] = self.fileLoader.pnt2Ms_(
                preLinearFitPnt1 - preLinearFitPnt0
            )
            spikeDict[iIdx]["preLinearFitVal0"] = preLinearFitVal0
            spikeDict[iIdx]["preLinearFitVal1"] = preLinearFitVal1

            # a linear fit where 'm,b = np.polyfit(x, y, 1)'
            # m*x+b"
            xFit = sweepX[preLinearFitPnt0:preLinearFitPnt1]  # abb added +1
            yFit = filteredVm[preLinearFitPnt0:preLinearFitPnt1]

            # sometimes xFit/yFit have 0 length -->> TypeError
            # print(f' {iIdx} preLinearFitPnt0:{preLinearFitPnt0}, preLinearFitPnt1:{preLinearFitPnt1}')
            # print(f'    xFit:{len(xFit)} yFit:{len(yFit)}')

            # TODO: somehow trigger following errors to confirm code works (pytest)
            with warnings.catch_warnings():
                warnings.filterwarnings("error")
                try:
                    mLinear, bLinear = np.polyfit(
                        xFit, yFit, 1
                    )  # m is slope, b is intercept
                    spikeDict[iIdx]["earlyDiastolicDurationRate"] = mLinear
                    # todo: make an error if edd rate is too low
                    lowestEddRate = dDict["lowEddRate_warning"]  # 8
                    if mLinear <= lowestEddRate:
                        errorType = "Fit EDD"
                        errorStr = f"Early diastolic duration rate fit - Too low {round(mLinear,3)}<={lowestEddRate}"
                        eDict = self._getErrorDict(
                            i, spikeTimes[i], errorType, errorStr
                        )  # spikeTime is in pnts
                        # print('fit edd start num error:', 'iIdx:', iIdx, 'num error:', len(spikeDict[iIdx]['errors']))
                        spikeDict[iIdx]["errors"].append(eDict)
                        # print('  after num error:', len(spikeDict[iIdx]['errors']))
                        if verbose:
                            print(f"  spike:{iIdx} error:{eDict}")

                except (TypeError, RuntimeWarning) as e:
                    # catching exception:  expected non-empty vector for x
                    # xFit/yFit turn up empty when mdp and TOP points are within 1 point
                    spikeDict[iIdx]["earlyDiastolicDurationRate"] = defaultVal
                    errorType = "Fit EDD"
                    # errorStr = 'Early diastolic duration rate fit - TypeError'
                    errorStr = (
                        "Early diastolic duration rate fit - preMinPnt == spikePnt"
                    )
                    eDict = self._getErrorDict(i, spikeTimes[i], errorType, errorStr)
                    spikeDict[iIdx]["errors"].append(eDict)
                    if verbose:
                        print(f"  spike:{iIdx} error:{eDict}")
                except np.RankWarning as e:
                    # logger.error('== FIX preLinearFitPnt0/preLinearFitPnt1 RankWarning')
                    # logger.error(f'  error is: {e}')
                    # print('RankWarning')
                    # also throws: RankWarning: Polyfit may be poorly conditioned
                    spikeDict[iIdx]["earlyDiastolicDurationRate"] = defaultVal
                    errorType = "Fit EDD"
                    errorStr = "Early diastolic duration rate fit - RankWarning"
                    eDict = self._getErrorDict(i, spikeTimes[i], errorType, errorStr)
                    spikeDict[iIdx]["errors"].append(eDict)
                    if verbose:
                        print(f"  spike:{iIdx} error:{eDict}")
                # 20230422, don't ever catch an unknown exception
                # except:
                #     logger.error(
                #         f" !!!!!!!!!!!!!!!!!!!!!!!!!!! UNKNOWN EXCEPTION DURING EDD LINEAR FIT for spike {i}"
                #     )
                #     spikeDict[iIdx]["earlyDiastolicDurationRate"] = defaultVal
                #     errorType = "Fit EDD"
                #     errorStr = "Early diastolic duration rate fit - Unknown Exception"
                #     eDict = self._getErrorDict(i, spikeTimes[i], errorType, errorStr)
                #     if verbose:
                #         print(f"  spike:{iIdx} error:{eDict}")

            # not implemented
            # self.spikeDict[i]['lateDiastolicDuration'] = ???

            #
            # maxima in dv/dt before spike (between TOP and peak)
            try:
                preRange = filteredDeriv[spikeTimes[i] : peakPnt + 1]
                preSpike_dvdt_max_pnt = np.argmax(preRange)
                preSpike_dvdt_max_pnt += spikeTimes[i]
                spikeDict[iIdx]["preSpike_dvdt_max_pnt"] = preSpike_dvdt_max_pnt
                spikeDict[iIdx]["preSpike_dvdt_max_val"] = filteredVm[
                    preSpike_dvdt_max_pnt
                ]  # in units mV
                spikeDict[iIdx]["preSpike_dvdt_max_val2"] = filteredDeriv[
                    preSpike_dvdt_max_pnt
                ]  # in units mV
            except ValueError as e:
                # sometimes preRange is empty, don't try and put min/max in error
                errorType = "Pre Spike dvdt"
                errorStr = "Searching for dvdt max - ValueError"
                eDict = self._getErrorDict(
                    i, spikeTimes[i], errorType, errorStr
                )  # spikeTime is in pnts
                spikeDict[iIdx]["errors"].append(eDict)
                if verbose:
                    print(f"  spike:{iIdx} error:{eDict}")

            #
            # minima in dv/dt after spike
            # postRange = dvdt[self.spikeTimes[i]:postMinPnt]
            # postSpike_ms = 20 # 10
            # postSpike_pnts = self.ms2Pnt_(postSpike_ms)
            dvdtPostWindow_ms = dDict["dvdtPostWindow_ms"]
            dvdtPostWindow_pnts = self.fileLoader.ms2Pnt_(dvdtPostWindow_ms)
            postRange = filteredDeriv[
                peakPnt : peakPnt + dvdtPostWindow_pnts
            ]  # fixed window after spike

            postSpike_dvdt_min_pnt = np.argmin(postRange)
            postSpike_dvdt_min_pnt += peakPnt
            spikeDict[iIdx]["postSpike_dvdt_min_pnt"] = postSpike_dvdt_min_pnt
            spikeDict[iIdx]["postSpike_dvdt_min_val"] = filteredVm[
                postSpike_dvdt_min_pnt
            ]
            spikeDict[iIdx]["postSpike_dvdt_min_val2"] = filteredDeriv[
                postSpike_dvdt_min_pnt
            ]

            #
            # diastolic duration was defined as the interval between MDP and TOP
            # one off error when preMinPnt is not defined
            spikeDict[iIdx]["diastolicDuration_ms"] = self.fileLoader.pnt2Ms_(
                spikeTime - preMinPnt
            )

            #
            # calculate instantaneous spike frequency and ISI, for first spike this is not defined
            spikeDict[iIdx]["cycleLength_ms"] = float("nan")
            if iIdx > 0:
                isiPnts = (
                    spikeDict[iIdx]["thresholdPnt"]
                    - spikeDict[iIdx - 1]["thresholdPnt"]
                )
                isi_ms = self.fileLoader.pnt2Ms_(isiPnts)
                isi_hz = 1 / (isi_ms / 1000)
                spikeDict[iIdx]["isi_pnts"] = isiPnts
                spikeDict[iIdx]["isi_ms"] = self.fileLoader.pnt2Ms_(isiPnts)
                spikeDict[iIdx]["spikeFreq_hz"] = 1 / (
                    self.fileLoader.pnt2Ms_(isiPnts) / 1000
                )

                # Cycle length was defined as the interval between MDPs in successive APs
                prevPreMinPnt = spikeDict[iIdx - 1]["preMinPnt"]  # can be nan
                thisPreMinPnt = spikeDict[iIdx]["preMinPnt"]
                if prevPreMinPnt is not None and thisPreMinPnt is not None:
                    cycleLength_pnts = thisPreMinPnt - prevPreMinPnt
                    spikeDict[iIdx]["cycleLength_pnts"] = cycleLength_pnts
                    spikeDict[iIdx]["cycleLength_ms"] = self.fileLoader.pnt2Ms_(
                        cycleLength_pnts
                    )
                else:
                    # error
                    prevPreMinSec = self.fileLoader.pnt2Sec_(prevPreMinPnt)
                    thisPreMinSec = self.fileLoader.pnt2Sec_(thisPreMinPnt)
                    # errorStr = f'Previous spike preMinPnt is {prevPreMinPnt} and this preMinPnt: {thisPreMinPnt}'
                    errorType = "Cycle Length"
                    errorStr = f"Previous spike preMinPnt (s) is {prevPreMinSec} and this preMinPnt: {thisPreMinSec}"
                    eDict = self._getErrorDict(
                        i, spikeTimes[i], errorType, errorStr
                    )  # spikeTime is in pnts
                    spikeDict[iIdx]["errors"].append(eDict)
                    if verbose:
                        print(f"  spike:{iIdx} error:{eDict}")

            #
            # TODO: Move half-width to a function !!!
            #
            hwWindowPnts = dDict["halfWidthWindow_ms"] * self.fileLoader.dataPointsPerMs
            hwWindowPnts = round(hwWindowPnts)
            halfHeightList = dDict["halfHeights"]
            # was this
            # self._getHalfWidth(filteredVm, i, iIdx, spikeTime, peakPnt, hwWindowPnts, self.dataPointsPerMs, halfHeightList)
            self._getHalfWidth(
                filteredVm,
                iIdx,
                spikeDict,
                spikeTime,
                peakPnt,
                hwWindowPnts,
                self.fileLoader.dataPointsPerMs,
                halfHeightList,
                verbose=verbose,
            )

        #
        # look between threshold crossing to get minima
        # we will ignore the first and last spike

        #
        # spike clips
        self.spikeClips = None
        self.spikeClips_x = None
        self.spikeClips_x2 = None

        # SUPER important, previously our self.spikeDict was simple list of dict
        # now it is a list of class xxx
        # print('=== addind', len(spikeDict))
        self.spikeDict.appendAnalysis(spikeDict)
        # print('   now have', len(self.spikeDict))
        # print(self.spikeDict)

        # keep track of spikes per sweep (expensive to calculate)
        # self._spikesPerSweep[sweepNumber] = len(spikeDict)

        # run all user analysis ... what if this fails ???
        sanpy.user_analysis.baseUserAnalysis.runAllUserAnalysis(self)

        #
        # generate a df holding stats (used by scatterplotwidget)
        # startSeconds = dDict['startSeconds']
        # stopSeconds = dDict['stopSeconds']
        # if self.numSpikes > 0:
        #     # exportObject = sanpy.bExport(self)
        #     # self.dfReportForScatter = exportObject.report(startSeconds, stopSeconds)
        #     self._dfReportForScatter = self.spikeDict.asDataFrame()
        # else:
        #     self.dfReportForScatter = None
        self.regenerateAnalysisDataFrame()

        # generate error report
        self.dfError = self.getErrorReport()

        # bAnalysis needs to be saved
        self._detectionDirty = True

        ## done

    def regenerateAnalysisDataFrame(self):
        if self.numSpikes > 0:
            # exportObject = sanpy.bExport(self)
            # self.dfReportForScatter = exportObject.report(startSeconds, stopSeconds)
            self._dfReportForScatter = self.spikeDict.asDataFrame()

            # get rid of analysis results columns, we get these from file metadata
            #  - include
            #  - cellType
            #  - sex
            #  - condition
            self._dfReportForScatter = self._dfReportForScatter.drop('include', axis=1)
            self._dfReportForScatter = self._dfReportForScatter.drop('cellType', axis=1)
            self._dfReportForScatter = self._dfReportForScatter.drop('sex', axis=1)
            # 202401 removed
            # self._dfReportForScatter = self._dfReportForScatter.drop('condition', axis=1)

            # add all file meta data to df
            for k,v in self.metaData.items():
                # logger.info(f'   adding metadata {k} {v}')
                self._dfReportForScatter[k] = v

        else:
            self.dfReportForScatter = None

    def _getFeet(self, thresholdPnts: List[int], prePnts: int) -> List[int]:
        """

        Args:
            thresholdPnts (list of int)
            prePnts (int): pre point window to search for zero crossing

        Notes:
            Will need to calculate new (height, half widths)
        """

        # prePnts = int(prePnts)

        logger.info(f"num thresh:{len(thresholdPnts)} prePnts:{prePnts}")

        # df = self.asDataFrame()
        # peaks = df['peakVal']
        # thresholdPnts = df['thresholdPnt']

        verbose = self._detectionDict["verbose"]

        # using the derivstive to find zero crossing before
        # original full width left point
        # TODO: USer self.filteredDeriv
        # yFull = self.filteredVm
        # yDiffFull = np.diff(yFull)
        # yDiffFull = np.insert(yDiffFull, 0, np.nan)
        yDiffFull = self.fileLoader.filteredDeriv

        secondDeriv = np.diff(yDiffFull, axis=0)
        secondDeriv = np.insert(secondDeriv, 0, np.nan)

        n = len(thresholdPnts)
        footPntList = [None] * n
        footSec = [None] * n  # not used
        yFoot = [None] * n  # not used
        # myHeight = []

        # todo: add this to bAnalysis
        # preMs = self._detectionParams['preFootMs']
        # prePnts = self._sec2Pnt(preMs/1000)

        # TODO: add to bDetection
        logger.warning("ADD preMs AS PARAMETER !!!")
        # preWinMs = 50  # sa-node
        # prePnts = self.ms2Pnt_(preMs)

        for idx, footPnt in enumerate(thresholdPnts):
            # footPnt = round(footPnt)  # footPnt is in fractional points
            lastCrossingPnt = footPnt
            # move forwared a bit in case we are already in a local minima ???
            logger.warning("REMOVED WHEN WORKING ON NEURON DETECTION")
            footPnt += 2  # TODO: add as param
            preStart = footPnt - prePnts
            preClip = yDiffFull[preStart:footPnt]

            zero_crossings = np.where(np.diff(np.sign(preClip)))[
                0
            ]  # find where derivative flips sign (crosses 0)
            xLastCrossing = self.fileLoader.pnt2Sec_(footPnt)  # defaults
            yLastCrossing = self.fileLoader.sweepY_filtered[footPnt]
            if len(zero_crossings) == 0:
                if verbose:
                    tmpSec = round(self.fileLoader.pnt2Sec_(footPnt), 3)
                    logger.error(
                        f"  no foot for peak {idx} at sec {tmpSec} ... did not find zero crossings"
                    )
            else:
                # print(idx, 'footPnt:', footPnt, zero_crossings, preClip)
                lastCrossingPnt = preStart + zero_crossings[-1]
                xLastCrossing = self.fileLoader.pnt2Sec_(lastCrossingPnt)
                # get y-value (pA) from filtered. This removes 'pops' in raw data
                yLastCrossing = self.fileLoader.sweepY_filtered[lastCrossingPnt]

            # find peak in second derivative
            """
            preStart2 = lastCrossingPnt
            footMs2 = 20
            footPnt2 = preStart2 + self.ms2Pnt_(footMs2)
            preClip2 = secondDeriv[preStart2:footPnt2]
            #zero_crossings = np.where(np.diff(np.sign(preClip2)))[0]
            peakPnt2 = np.argmax(preClip2)
            peakPnt2 += preStart2

            #
            footPntList[idx] = peakPnt2
            """

            footPntList[idx] = lastCrossingPnt  # was this and worked, a bit too early

            footSec[idx] = xLastCrossing
            yFoot[idx] = yLastCrossing

            """
            peakPnt = df.loc[idx, 'peak_pnt']
            peakVal = self.sweepY_filtered[peakPnt]
            height = peakVal - yLastCrossing
            #print(f'idx {idx} {peakPnt} {peakVal} - {yLastCrossing} = {height}')
            myHeight[idx] = (height)
            """

        #
        # df =self._analysisList[self._analysisIdx]['results_full']
        """
        df['foot_pnt'] = footPntList  # sec
        df['foot_sec'] = footSec  # sec
        df['foot_val'] = yFoot  # pA
        """
        # df['myHeight'] = myHeight

        # return footPntList, footSec, yFoot
        return footPntList

    def printSpike(self, idx):
        """
        Print values in one spike analysis using self.spikeDict (sanpy.bAnalysisResults).
        """
        spike = self.spikeDict[idx]
        for k, v in spike.items():
            if k == "widths":
                widths = v
                print(f"  spike:{idx} has {len(widths)} widths...")
                for wIdx, width in enumerate(widths):
                    print(f"    spike:{idx} width:{wIdx}: {width}")
            elif k == "errors":
                errors = v
                print(f"  spike:{idx} has {len(errors)} errors...")
                for eIdx, error in enumerate(errors):
                    print(f"    spike:{idx} error #:{eIdx}: {error}")
            else:
                print(f"{k}: {v}")

    def printErrors(self):
        for idx, spike in enumerate(self.spikeDict):
            print(f"spike {idx} has {len(spike['errors'])} errors")
            for eIdx, error in enumerate(spike["errors"]):
                print(f"  error # {eIdx} is: {error}")

    def _makeSpikeClips(
        self,
        preSpikeClipWidth_ms,
        postSpikeClipWidth_ms=None,
        theseTime_sec=None,
        sweepNumber=None,
        epochNumber='All'
    ):
        """
        (Internal) Make small clips for each spike.

        Args:
            preSpikeClipWidth_ms (int): Width of each spike clip in milliseconds.
            postSpikeClipWidth_ms (int): Width of each spike clip in milliseconds.
            theseTime_sec (list of float): [NOT USED] List of seconds to make clips from.

        Returns:
            spikeClips_x2: ms
            self.spikeClips (list): List of spike clips
        """

        verbose = self._detectionDict["verbose"]

        if preSpikeClipWidth_ms is None:
            preSpikeClipWidth_ms = self._detectionDict["preSpikeClipWidth_ms"]
        if postSpikeClipWidth_ms is None:
            postSpikeClipWidth_ms = self._detectionDict["postSpikeClipWidth_ms"]

        if sweepNumber is None:
            sweepNumber = "All"

        # print('makeSpikeClips() spikeClipWidth_ms:', spikeClipWidth_ms, 'theseTime_sec:', theseTime_sec)
        if theseTime_sec is None:
            theseTime_pnts = self.getSpikeTimes(sweepNumber=sweepNumber, epochNumber=epochNumber)
        else:
            # convert theseTime_sec to pnts
            theseTime_ms = [x * 1000 for x in theseTime_sec]
            theseTime_pnts = [x * self.fileLoader.dataPointsPerMs for x in theseTime_ms]
            theseTime_pnts = [round(x) for x in theseTime_pnts]

        preClipWidth_pnts = self.fileLoader.ms2Pnt_(preSpikeClipWidth_ms)
        # if preClipWidth_pnts % 2 == 0:
        #    pass # Even
        # else:
        #    clipWidth_pnts += 1 # Make odd even
        postClipWidth_pnts = self.fileLoader.ms2Pnt_(postSpikeClipWidth_ms)

        # halfClipWidth_pnts = int(clipWidth_pnts/2)

        # print('  makeSpikeClips() clipWidth_pnts:', clipWidth_pnts, 'halfClipWidth_pnts:', halfClipWidth_pnts)
        # make one x axis clip with the threshold crossing at 0
        # was this, in ms
        # self.spikeClips_x = [(x-halfClipWidth_pnts)/self.dataPointsPerMs for x in range(clipWidth_pnts)]

        # in ms
        self.spikeClips_x = [
            (x - preClipWidth_pnts) / self.fileLoader.dataPointsPerMs
            for x in range(preClipWidth_pnts)
        ]
        self.spikeClips_x += [
            (x) / self.fileLoader.dataPointsPerMs for x in range(postClipWidth_pnts)
        ]

        # 20190714, added this to make all clips same length, much easier to plot in MultiLine
        numPointsInClip = len(self.spikeClips_x)

        self.spikeClips = []
        self.spikeClips_x2 = []

        sweepY = self.fileLoader.sweepY_filtered

        # when there are no spikes getStat() will not return anything
        # For 'All' sweeps, we need to know column
        sweepNum = self.getStat("sweep", sweepNumber=sweepNumber)

        # logger.info(f'sweepY: {sweepY.shape} {len(sweepY.shape)}')
        # logger.info(f'theseTime_pnts: {theseTime_pnts}')

        for idx, spikeTime in enumerate(theseTime_pnts):
            sweep = sweepNum[idx]

            if len(sweepY.shape) == 1:
                # 1D case where recording has only oone sweep
                # currentClip = sweepY[spikeTime-halfClipWidth_pnts:spikeTime+halfClipWidth_pnts]
                currentClip = sweepY[
                    spikeTime - preClipWidth_pnts : spikeTime + postClipWidth_pnts
                ]
            else:
                # 2D case where recording has multiple sweeps
                # currentClip = sweepY[spikeTime-halfClipWidth_pnts:spikeTime+halfClipWidth_pnts, sweep]
                try:
                    currentClip = sweepY[
                        spikeTime - preClipWidth_pnts : spikeTime + preClipWidth_pnts,
                        sweep,
                    ]
                except IndexError as e:
                    logger.error(e)
                    print(f"sweep: {sweep}")
                    print(f"sweepY.shape: {sweepY.shape}")

            if len(currentClip) == numPointsInClip:
                self.spikeClips.append(currentClip)
                self.spikeClips_x2.append(
                    self.spikeClips_x
                )  # a 2D version to make pyqtgraph multiline happy
            else:
                # pass
                if verbose:
                    logger.warning(
                        f"Did not add clip for spike index: {idx} at time: {spikeTime} len(currentClip): {len(currentClip)} != numPointsInClip: {numPointsInClip}"
                    )

        #
        return self.spikeClips_x2, self.spikeClips

    def getSpikeClips(
        self,
        theMin,
        theMax,
        spikeSelection=[],
        preSpikeClipWidth_ms=None,
        postSpikeClipWidth_ms=None,
        sweepNumber=None,
        epochNumber='All',
        ignoreMinMax=False  # added 20230418
    ):
        """Get 2d list of spike clips, spike clips x, and 1d mean spike clip.

        Args:
            theMin (float): Start seconds.
            theMax (float): Stop seconds.
            spikeSelection (list): List of spike numbers
            preSpikeClipWidth_ms (float):
            postSpikeClipWidth_ms (float):

        Requires: self.spikeDetect() and self._makeSpikeClips()

        Returns:
            theseClips (list): List of clip
            theseClips_x (list): ms
            meanClip (list)
        """

        if self.numSpikes == 0:
            return

        doSpikeSelection = len(spikeSelection) > 0

        if doSpikeSelection:
            pass
        elif theMin is None or theMax is None:
            theMin = 0
            theMax = self.fileLoader.recordingDur  # self.sweepX[-1]

        # new interface, spike detect no longer auto generates these
        # need to do this every time because we get here when sweepNumber changes
        # if self.spikeClips is None:
        #    self._makeSpikeClips(spikeClipWidth_ms=spikeClipWidth_ms, sweepNumber=sweepNumber)
        # TODO: don't make all clips
        # self._makeSpikeClips(spikeClipWidth_ms=spikeClipWidth_ms, sweepNumber=sweepNumber)
        self._makeSpikeClips(
            preSpikeClipWidth_ms=preSpikeClipWidth_ms,
            postSpikeClipWidth_ms=postSpikeClipWidth_ms,
            sweepNumber=sweepNumber,
            epochNumber=epochNumber
        )

        # make a list of clips within start/stop (Seconds)
        theseClips = []
        theseClips_x = []
        tmpMeanClips = []  # for mean clip
        meanClip = []

        # spikeTimes are in pnts
        spikeTimes = self.getSpikeTimes(sweepNumber=sweepNumber, epochNumber=epochNumber)

        logger.info(f'spikeTimes:{len(spikeTimes)} sweepNumber:{sweepNumber} epochNumber:{epochNumber}')

        # if len(spikeTimes) != len(self.spikeClips):
        #    logger.error(f'len spikeTimes {len(spikeTimes)} !=  spikeClips {len(self.spikeClips)}')

        # self.spikeClips is a list of clips
        for idx, clip in enumerate(self.spikeClips):
            doThisSpike = False
            if doSpikeSelection:
                doThisSpike = idx in spikeSelection
            else:
                spikeTime = spikeTimes[idx]
                spikeTime = self.fileLoader.pnt2Sec_(spikeTime)
                if ignoreMinMax or (spikeTime >= theMin and spikeTime <= theMax):
                    doThisSpike = True
            if doThisSpike:
                theseClips.append(clip)
                theseClips_x.append(
                    self.spikeClips_x2[idx]
                )  # remember, all _x are the same
                if len(self.spikeClips_x) == len(clip):
                    tmpMeanClips.append(clip)  # for mean clip
        if len(tmpMeanClips):
            meanClip = np.mean(tmpMeanClips, axis=0)

        return theseClips, theseClips_x, meanClip

    # def numErrors(self):
    #     if self.dfError is None:
    #         return "N/A"
    #     else:
    #         return len(self.dfError)

    def getErrorReport(self):
        """Generate an error report, one row per error.

        Spikes can have more than one error.

        Returns:
            (pandas DataFrame): Pandas DataFrame, one row per error.
        """

        dictList = []

        # numError = 0
        # errorList = []

        # logger.info(f'Generating error report for {len(self.spikeDict)} spikes')

        #  20230422 spikeDict is not working as an iterable
        # use it as a list instead
        numSpikes = len(self.spikeDict)
        #for spike in self.spikeDict:
        for _spikeNumber in range(numSpikes):
            spike = self.spikeDict[_spikeNumber]
            # spike is sanpy.bAnalysisResults.analysisResult
            #print('spike:', spike)
            for error in spike["errors"]:
                # spike["errors"] is a list of dict
                # error is dict from _getErrorDict
                if error is None or error == np.nan or error == "nan":
                    continue

                # 20230422 add sweep and epoch to error dict
                #_spikeNumber = error['Spike']

                #print('  _spikeNumber:', _spikeNumber, type(_spikeNumber))

                # _sweep = self.getSpikeStat([_spikeNumber], 'sweep')
                # if len(_sweep)==0:
                #     logger.error(f"_spikeNumber:{_spikeNumber} sweep:{_sweep}")
                #     #print(self.getOneSpikeDict(_spikeNumber))

                error['Sweep'] = self.getSpikeStat([_spikeNumber], 'sweep')[0]
                error['Epoch'] = self.getSpikeStat([_spikeNumber], 'epoch')[0]

                dictList.append(error)

        if len(dictList) == 0:
            fakeErrorDict = self._getErrorDict(1, 1, "fake", "fake")
            dfError = pd.DataFrame(columns=fakeErrorDict.keys())
        else:
            dfError = pd.DataFrame(dictList)

        if self._detectionDict["verbose"]:
            logger.info(f"Found {len(dfError)} errors in spike detection")

        return dfError

    def _old_to_csv(self):
        """Save as a CSV text file with name <path>_analysis.csv'"""
        savefile = os.path.splitext(self._path)[0]
        savefile += "_analysis.csv"
        saveExcel = False
        alsoSaveTxt = True
        logger.info(f'Saving "{savefile}"')

        be = sanpy.bExport(self)
        be.saveReport(savefile, saveExcel=saveExcel, alsoSaveTxt=alsoSaveTxt)

    def _old__normalizeData(self, data):
        """Calculate normalized data for detection from Kymograph. Is NOT for df/d0."""
        return (data - np.min(data)) / (np.max(data) - np.min(data))

    def _not_used_loadAnalysis(self):
        """Not used."""
        saveBase = self._getSaveBase()

        # load detection parameters
        # self.detectionClass.load(saveBase)

        # load analysis
        # self.spikeDict.load(saveBase)

        saveBase = self._getSaveBase()
        savePath = saveBase + "-analysis.json"

        if not os.path.isfile(savePath):
            # logger.error(f'Did not find file: {savePath}')
            return

        logger.info(f"Loading from saved analysis: {savePath}")

        with open(savePath, "r") as f:
            # self._dDict = json.load(f)
            loadedDict = json.load(f)

        dDict = loadedDict["detection"]
        self.detectionClass._dDict = dDict

        analysisList = loadedDict["analysis"]
        self.spikeDict._myList = analysisList

        self._detectionDirty = False
        self._isAnalyzed = True

    def saveAnalysis_tocsv(self, path : str = None, verbose=False):
        """Save analysis to csv.

        CSV starts with one 
        Parameters
        ----------
        path : str
            Full path of file to save, if None will save as default.
        """

        if path is None:
            saveFolder = self._getSaveFolder()
            if not os.path.isdir(saveFolder):
                if verbose:
                    logger.info(f"making folder: {saveFolder}")
                os.mkdir(saveFolder)

            saveBase = self._getSaveBase()
            path = saveBase + "-analysis.csv"

        if verbose:
            logger.info(f'saving to: {path}')

        metaDataHeader = self.metaData.getHeader()

        with open(path, "w") as f:
            f.write(metaDataHeader)
            f.write("\n")

        df = self.asDataFrame()  # pd.DataFrame(self.spikeDict)
        if df is not None:
            df.to_csv(path, mode="a")
        # else:
            # happens when user sets metaDat but does not do analysis
            # logger.warning(f'asDataFrame() returned None')
            # logger.warning(f'  did not save: {self}')

    def saveAnalysis(self, forceSave=False):
        """Not used.

        Save detection parameters and analysis results as json.
        """
        if not self._detectionDirty and not forceSave:
            return

        saveFolder = self._getSaveFolder()
        if not os.path.isdir(saveFolder):
            logger.info(f"making folder: {saveFolder}")
            os.mkdir(saveFolder)

        saveBase = self._getSaveBase()
        savePath = saveBase + "-analysis.json"

        # save detection parameters
        # self.detectionClass.save(saveBase)
        dDict = self.detectionClass.getDict()

        saveDict = {}
        saveDict["detection"] = dDict

        # save list of dict
        # self.spikeDict = sanpy.bAnalysisResults.analysisResultList()
        # self.spikeDict.save(saveBase)
        analysisList = self.spikeDict.asList()

        saveDict["analysis"] = analysisList

        with open(savePath, "w") as f:
            json.dump(saveDict, f, cls=NumpyEncoder, indent=4)

        self._detectionDirty = False

        logger.info(f"Saved analysis to: {savePath}")

    def _getSaveFolder(self):
        """
        All analysis will be saved in folder 'sanpy_analysis'
        """
        filepath = self.fileLoader.filepath
        parentPath, fileName = os.path.split(filepath)
        saveFolder = os.path.join(parentPath, "sanpy_analysis")
        return saveFolder

    def _getSaveBase(self):
        """Get basename to append to to save

        This will always be in a subfolder named 'sanpy_analysis'

        For example, bDetection uses this to save <base>-detection.json
        """
        saveFolder = self._getSaveFolder()

        filepath = self.fileLoader.filepath
        parentPath, fileName = os.path.split(filepath)
        baseName = os.path.splitext(fileName)[0]
        savePath = os.path.join(saveFolder, baseName)

        return savePath

    @property
    def analysisDate(self):
        if self.spikeDict is not None:
            return self.spikeDict.analysisDate()

    @property
    def analysisTime(self):
        if self.spikeDict is not None:
            return self.spikeDict.analysisTime()

    def _api_getHeader(self):
        """Get header as a dict.

        TODO:
            - add info on abf file, like samples per ms

        Returns:
            dict: Dictionary of information about loaded file.
        """
        # recordingDir_sec = len(self.sweepX) / self.dataPointsPerMs / 1000
        recordingFrequency = self.dataPointsPerMs

        ret = {
            "myFileType": self.myFileType,  # ('abf', 'tif', 'bytestream', 'csv')
            "loadError": self.loadError,
            #'detectionDict': self.detectionClass,
            "path": self._path,
            "file": self.fileLoader.filename,
            "dateAnalyzed": self.dateAnalyzed,
            #'detectionType': self.detectionType,
            "acqDate": self.acqDate,
            "acqTime": self.acqTime,
            #
            "_recordingMode": self._recordingMode,
            "get_yUnits": self.get_yUnits(),
            #'currentSweep': self.currentSweep,
            "recording_kHz": recordingFrequency,
            "recordingDur_sec": self.recordingDur,
        }
        return ret

    def _api_getSpikeInfo(self, spikeNum=None):
        """Get info about each spike.

        Args:
            spikeNum (int): Get info for one spike, None for all spikes.

        Returns:
            list: List of dict with info for all (one) spike.
        """
        if spikeNum is not None:
            ret = [self.spikeDict[spikeNum]]
        else:
            ret = self.spikeDict
        return ret

    def _api_getSpikeStat(self, stat):
        """Get stat for each spike

        Args:
            stat (str): The name of the stat to get. Corresponds to key in self.spikeDict[i].

        Returns:
            list: List of values for 'stat'. Ech value is for one spike.
        """
        statList = self.getStat(statName1=stat, statName2=None)
        return statList

    def _api_getRecording(self):
        """Return primary recording

        Returns:
            dict: {'header', 'sweepX', 'sweepY'}

        TODO:
            Add param to only get every n'th point, to return a subset faster (for display)
        """
        # start = time.time()
        ret = {
            "header": self.api_getHeader(),
            "sweepX": self.sweepX2.tolist(),
            "sweepY": self.sweepY2.tolist(),
        }
        # stop = time.time()
        # print(stop-start)
        return ret

Attributes¤

dateAnalyzed: str = None instance-attribute ¤

str: Date Time of analysis. TODO: make a property.

fileLoader: sanpy.fileLoader_base property ¤

kymAnalysis property ¤

Get the kymAnalysis object (if it exists).

loadError: bool = False instance-attribute ¤

bool: True if error loading file/stream.

numErrors: int property ¤

Get number of detection errors.

numSpikes property ¤

Get the total number of detected spikes (all sweeps).

See getNumSpikes(sweep)

Functions¤

__init__(filepath=None, byteStream=None, loadData=True, fileLoaderDict=None, stimulusFileFolder=None, verbose=False) ¤

Args: filepath (str): Path to either .abf or .csv with time/mV columns. byteStream (io.BytesIO): Binary stream for use in the cloud. loadData: If true, load raw data, otherwise just load header fileLoaderDict (dict) If None then fetch from sanpy.fileloaders.getFileLoaders() Do this if running in a script. If running an SanPy app, we pass the dict stimulusFileFolder:

Source code in sanpy/bAnalysis_.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def __init__(
    self,
    filepath: str = None,
    byteStream=None,
    loadData: bool = True,
    fileLoaderDict: dict = None,
    stimulusFileFolder: str = None,
    verbose: bool = False,
):
    """
    Args:
        filepath (str): Path to either .abf or .csv with time/mV columns.
        byteStream (io.BytesIO): Binary stream for use in the cloud.
        loadData: If true, load raw data, otherwise just load header
        fileLoaderDict (dict)
            If None then fetch from sanpy.fileloaders.getFileLoaders()
            Do this if running in a script.
            If running an SanPy app, we pass the dict
        stimulusFileFolder:
    """

    """
    self._path = file  # todo: change this to filePath
    """
    """str: File path."""

    self._detectionDict: dict = None  # corresponds to an item in sanpy.bDetection

    # sept 9, moving this to file loader
    # fileloader holds meta data
    #self._metaData = MetaData(self)  #self.getMetaDataDict()

    self._isAnalyzed: bool = False

    self.loadError: bool = False
    """bool: True if error loading file/stream."""

    # self.detectionDict = None  # remember the parameters of our last detection
    """dict: Dictionary specifying detection parameters, see bDetection.getDefaultDetection."""

    # self._abf = None
    """pyAbf: If loaded from binary .abf file"""

    self.dateAnalyzed: str = None
    """str: Date Time of analysis. TODO: make a property."""

    # self.detectionType = None
    """str: From ('dvdt', 'mv')"""

    self.spikeDict: sanpy.bAnalysisResults.analysisResultList = (
        sanpy.bAnalysisResults.analysisResultList()
    )
    # class to store all analysis results

    # self._spikesPerSweep : int = None

    self.spikeClips = []  # created in self.spikeDetect()
    self.spikeClips_x = []  #
    self.spikeClips_x2 = []  #

    self.dfError = None  # dataframe with a list of detection errors
    self._dfReportForScatter = None  # dataframe to be used by scatterplotwidget

    self._detectionDirty = False

    # will be overwritten by existing uuid in self._loadFromDf()
    self.uuid = sanpy._util.getNewUuid()

    # self.tifData = None
    # when we have a tif kymograph

    # self.isBytesIO = False
    # when we are running in the cloud

    # TODO (cudmore) need to parse folder of file loaders in fileloders/ and determine
    # class to use to load file (using fileLoader.filetype
    self._fileLoader = None
    if filepath is not None and not os.path.isfile(filepath):
        logger.error(f'File does not exist: "{filepath}"')
        self.loadError = True
    else:

        if fileLoaderDict is None:
            fileLoaderDict = (
                sanpy.fileloaders.getFileLoaders()
            )  # EXPENSIVE, to do, pass in from app
        # print('2 fileLoaderDict:', fileLoaderDict)

        # print('1 fileLoaderDict:')
        # for _k,_v in fileLoaderDict.items():
        #     print(_k,_v)

        _ext = os.path.splitext(filepath)[1]
        # _ext = _ext[1:]
        try:
            if verbose:
                logger.info(f"Loading file with extension: {_ext}")
            constructorObject = fileLoaderDict[_ext]["constructor"]
            self._fileLoader = constructorObject(filepath)
            # may 2, 2023
            if self._fileLoader._loadError:
                logger.error(f'load error in file loader for ext: "{_ext}"')
                self.loadError = True

        except KeyError as e:
            logger.error(f'did not find a file loader for extension "{_ext}", available loaders are: {fileLoaderDict.keys()}')
            self.loadError = True

        self._kymAnalysis : sanpy.kymAnalysis = None
        if (self.fileLoader is not None) and (self.fileLoader.recordingMode == recordingModes.kymograph):
            if verbose:
                logger.info('creating kymAnalysis')
                logger.info(f'    self.fileLoader.filepath:{self.fileLoader.filepath}')
                logger.info(f'    self.fileLoader.tifData:{self.fileLoader.tifData.shape}')
                logger.info(f'    self.fileLoader.tifHeader:{self.fileLoader.tifHeader}')
            self._kymAnalysis = sanpy.kymAnalysis(self.fileLoader.filepath,
                                                  self.fileLoader.tifData,
                                                  self.fileLoader.tifHeader)

        if self._fileLoader is not None:
            # we need to so file loader meta data can set ba (Self) dirty when changed
            self.fileLoader.metadata._ba = self


    """
    if byteStream is not None:
        self._loadAbf(byteStream=byteStream,
                loadData=loadData,
                stimulusFileFolder=stimulusFileFolder)
    elif file is not None and file.endswith('.abf'):
        self._loadAbf(loadData=loadData)
    elif file is not None and file.endswith('.atf'):
        self._loadAtf(loadData=loadData)
    elif file is not None and file.endswith('.tif'):
        self._loadTif()
    elif file is not None and file.endswith('.csv'):
        self._loadCsv()
    else:
        pass
        #logger.error(f'Can only open abf/csv/tif/stream files: {file}')
        #self.loadError = True
    """

    # get default derivative
    if loadData and not self.loadError:
        self._rebuildFiltered()

    self._detectionDirty = False

    """
    self.setSweep()
    """

__str__() ¤

Get a brief str representation. Usefull for print().

Source code in sanpy/bAnalysis_.py
259
260
261
262
263
264
265
266
267
def __str__(self):
    """Get a brief str representation. Usefull for print()."""
    # if self.isBytesIO:
    #      filename = '<BytesIO>'
    # else:
    #     filename = self.getFileName()
    fileLoadStr = self.fileLoader.__str__()
    txt = f"fileLoader: {fileLoadStr} spikes:{self.numSpikes}"
    return txt

asDataFrame(regenerateAnalysisDataFrame=False) ¤

Return analysis as a Pandas DataFrame.

Important: This is a df copy of our self.spikeDict Do not modify and expect changes to stick

Source code in sanpy/bAnalysis_.py
237
238
239
240
241
242
243
244
245
246
247
248
249
def asDataFrame(self, regenerateAnalysisDataFrame=False):
    """Return analysis as a Pandas DataFrame.

    Important:
        This is a df copy of our self.spikeDict
        Do not modify and expect changes to stick
    """

    # re-add file metadata, it may have changed
    if regenerateAnalysisDataFrame:
        self.regenerateAnalysisDataFrame()

    return self._dfReportForScatter

getDetectionDict(asCopy=False) ¤

Get the detection dictionary that was used for detect().

Source code in sanpy/bAnalysis_.py
252
253
254
255
256
257
def getDetectionDict(self, asCopy: bool = False):
    """Get the detection dictionary that was used for detect()."""
    if asCopy:
        return copy.deepcopy(self._detectionDict)
    else:
        return self._detectionDict

getErrorReport() ¤

Generate an error report, one row per error.

Spikes can have more than one error.

Returns: (pandas DataFrame): Pandas DataFrame, one row per error.

Source code in sanpy/bAnalysis_.py
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
def getErrorReport(self):
    """Generate an error report, one row per error.

    Spikes can have more than one error.

    Returns:
        (pandas DataFrame): Pandas DataFrame, one row per error.
    """

    dictList = []

    # numError = 0
    # errorList = []

    # logger.info(f'Generating error report for {len(self.spikeDict)} spikes')

    #  20230422 spikeDict is not working as an iterable
    # use it as a list instead
    numSpikes = len(self.spikeDict)
    #for spike in self.spikeDict:
    for _spikeNumber in range(numSpikes):
        spike = self.spikeDict[_spikeNumber]
        # spike is sanpy.bAnalysisResults.analysisResult
        #print('spike:', spike)
        for error in spike["errors"]:
            # spike["errors"] is a list of dict
            # error is dict from _getErrorDict
            if error is None or error == np.nan or error == "nan":
                continue

            # 20230422 add sweep and epoch to error dict
            #_spikeNumber = error['Spike']

            #print('  _spikeNumber:', _spikeNumber, type(_spikeNumber))

            # _sweep = self.getSpikeStat([_spikeNumber], 'sweep')
            # if len(_sweep)==0:
            #     logger.error(f"_spikeNumber:{_spikeNumber} sweep:{_sweep}")
            #     #print(self.getOneSpikeDict(_spikeNumber))

            error['Sweep'] = self.getSpikeStat([_spikeNumber], 'sweep')[0]
            error['Epoch'] = self.getSpikeStat([_spikeNumber], 'epoch')[0]

            dictList.append(error)

    if len(dictList) == 0:
        fakeErrorDict = self._getErrorDict(1, 1, "fake", "fake")
        dfError = pd.DataFrame(columns=fakeErrorDict.keys())
    else:
        dfError = pd.DataFrame(dictList)

    if self._detectionDict["verbose"]:
        logger.info(f"Found {len(dfError)} errors in spike detection")

    return dfError

getNumSpikes(sweep=0) ¤

Get number of spikes in a sweep.

See property numSpikes

Source code in sanpy/bAnalysis_.py
487
488
489
490
491
492
493
def getNumSpikes(self, sweep: int = 0):
    """Get number of spikes in a sweep.

    See property numSpikes
    """
    thresholdSec = self.getStat("thresholdSec", sweepNumber=sweep)
    return len(thresholdSec)

getSpikeClips(theMin, theMax, spikeSelection=[], preSpikeClipWidth_ms=None, postSpikeClipWidth_ms=None, sweepNumber=None, epochNumber='All', ignoreMinMax=False) ¤

Get 2d list of spike clips, spike clips x, and 1d mean spike clip.

Args: theMin (float): Start seconds. theMax (float): Stop seconds. spikeSelection (list): List of spike numbers preSpikeClipWidth_ms (float): postSpikeClipWidth_ms (float):

Requires: self.spikeDetect() and self._makeSpikeClips()

Returns: theseClips (list): List of clip theseClips_x (list): ms meanClip (list)

Source code in sanpy/bAnalysis_.py
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
def getSpikeClips(
    self,
    theMin,
    theMax,
    spikeSelection=[],
    preSpikeClipWidth_ms=None,
    postSpikeClipWidth_ms=None,
    sweepNumber=None,
    epochNumber='All',
    ignoreMinMax=False  # added 20230418
):
    """Get 2d list of spike clips, spike clips x, and 1d mean spike clip.

    Args:
        theMin (float): Start seconds.
        theMax (float): Stop seconds.
        spikeSelection (list): List of spike numbers
        preSpikeClipWidth_ms (float):
        postSpikeClipWidth_ms (float):

    Requires: self.spikeDetect() and self._makeSpikeClips()

    Returns:
        theseClips (list): List of clip
        theseClips_x (list): ms
        meanClip (list)
    """

    if self.numSpikes == 0:
        return

    doSpikeSelection = len(spikeSelection) > 0

    if doSpikeSelection:
        pass
    elif theMin is None or theMax is None:
        theMin = 0
        theMax = self.fileLoader.recordingDur  # self.sweepX[-1]

    # new interface, spike detect no longer auto generates these
    # need to do this every time because we get here when sweepNumber changes
    # if self.spikeClips is None:
    #    self._makeSpikeClips(spikeClipWidth_ms=spikeClipWidth_ms, sweepNumber=sweepNumber)
    # TODO: don't make all clips
    # self._makeSpikeClips(spikeClipWidth_ms=spikeClipWidth_ms, sweepNumber=sweepNumber)
    self._makeSpikeClips(
        preSpikeClipWidth_ms=preSpikeClipWidth_ms,
        postSpikeClipWidth_ms=postSpikeClipWidth_ms,
        sweepNumber=sweepNumber,
        epochNumber=epochNumber
    )

    # make a list of clips within start/stop (Seconds)
    theseClips = []
    theseClips_x = []
    tmpMeanClips = []  # for mean clip
    meanClip = []

    # spikeTimes are in pnts
    spikeTimes = self.getSpikeTimes(sweepNumber=sweepNumber, epochNumber=epochNumber)

    logger.info(f'spikeTimes:{len(spikeTimes)} sweepNumber:{sweepNumber} epochNumber:{epochNumber}')

    # if len(spikeTimes) != len(self.spikeClips):
    #    logger.error(f'len spikeTimes {len(spikeTimes)} !=  spikeClips {len(self.spikeClips)}')

    # self.spikeClips is a list of clips
    for idx, clip in enumerate(self.spikeClips):
        doThisSpike = False
        if doSpikeSelection:
            doThisSpike = idx in spikeSelection
        else:
            spikeTime = spikeTimes[idx]
            spikeTime = self.fileLoader.pnt2Sec_(spikeTime)
            if ignoreMinMax or (spikeTime >= theMin and spikeTime <= theMax):
                doThisSpike = True
        if doThisSpike:
            theseClips.append(clip)
            theseClips_x.append(
                self.spikeClips_x2[idx]
            )  # remember, all _x are the same
            if len(self.spikeClips_x) == len(clip):
                tmpMeanClips.append(clip)  # for mean clip
    if len(tmpMeanClips):
        meanClip = np.mean(tmpMeanClips, axis=0)

    return theseClips, theseClips_x, meanClip

getSpikeDictionaries(sweepNumber=None) ¤

Get spike dictionaries for current sweep

Source code in sanpy/bAnalysis_.py
836
837
838
839
840
841
842
843
844
845
846
847
def getSpikeDictionaries(self, sweepNumber=None):
    """Get spike dictionaries for current sweep
    """
    if sweepNumber is None:
        sweepNumber = "All"
    # logger.info(f'sweepNumber:{sweepNumber}')
    theRet = [
        spike
        for spike in self.spikeDict
        if sweepNumber == "All" or spike["sweep"] == sweepNumber
    ]
    return theRet

getSpikeSeconds(sweepNumber=None) ¤

Get spike times (seconds) for current sweep

Source code in sanpy/bAnalysis_.py
830
831
832
833
834
def getSpikeSeconds(self, sweepNumber=None):
    """Get spike times (seconds) for current sweep"""
    # theRet = [spike['thresholdSec'] for spike in self.spikeDict if spike['sweep']==self.currentSweep]
    theRet = self.getStat("thresholdSec", sweepNumber=sweepNumber)
    return theRet

getSpikeStat(spikeList, stat) ¤

Get one stat from a list of spikes

Parameters:

Name Type Description Default
spikeList List[int]
required
stat str
required
Source code in sanpy/bAnalysis_.py
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
def getSpikeStat(self, spikeList : List[int], stat : str):
    """Get one stat from a list of spikes

    Parameters
    ----------
    spikeList : List[int]
    stat : str
    """

    # if isinstance(spikeList, int):
    #     spikeList = [spikeList]

    if len(spikeList) == 0:
        return None

    # logger.info(f'spikeList: {spikeList} stat:{stat}')

    retList = []
    # count = 0
    for idx, spike in enumerate(self.spikeDict):
        # logger.info(f'  idx:{idx}')
        if idx in spikeList:
            try:
                val = spike[stat]
                retList.append(val)
                # count += 1
            except KeyError as e:
                logger.error(e)
    # logger.info(f'  retList: {retList}')
    return retList

getSpikeTimes(sweepNumber=None, epochNumber='All') ¤

Get spike times (points) for current sweep

Source code in sanpy/bAnalysis_.py
824
825
826
827
828
def getSpikeTimes(self, sweepNumber=None, epochNumber='All'):
    """Get spike times (points) for current sweep"""
    # theRet = [spike['thresholdPnt'] for spike in self.spikeDict if spike['sweep']==self.currentSweep]
    theRet = self.getStat("thresholdPnt", sweepNumber=sweepNumber, epochNumber=epochNumber)
    return theRet

getStat(statName1, statName2=None, sweepNumber=None, epochNumber=None, asArray=False, getFullList=False) ¤

Get a list of values for one or two analysis results.

Parameters:

Name Type Description Default
statName1 str

Name of the first analysis parameter to retreive.

required
statName2 str

Optional name of the second analysis parameter to retreive.

None
sweepNumber int str or None

Optional sweep number, if None or 'All' then get all sweeps

None
epochNumber int str or None

Optional epoch number, if None or 'All' then get all epochs

None
asArray bool

If True then return as np.array(), otherwise return as a list

False
Notes¤

For a list of available analysis results, see bDetection.getDefaultDetection()

If the returned list of analysis results are in points, convert to seconds or ms using: pnt2Sec_(pnt) or pnt2Ms_(pnt).

Returns:

Type Description
list or array

List of analysis parameter values, None if error. Returns a np.array is asArray is True

Source code in sanpy/bAnalysis_.py
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
def getStat(
    self,
    statName1,
    statName2: Optional[str] = None,
    sweepNumber: Optional[int] = None,
    epochNumber: Optional[int] = None,
    asArray: Optional[bool] = False,
    getFullList : Optional[bool] = False
):
    """Get a list of values for one or two analysis results.

    Parameters
    ----------
    statName1 : str
        Name of the first analysis parameter to retreive.
    statName2 : str
        Optional name of the second analysis parameter to retreive.
    sweepNumber : int str or None
        Optional sweep number, if None or 'All' then get all sweeps
    epochNumber : int str or None
        Optional epoch number, if None or 'All' then get all epochs
    asArray : bool
        If True then return as np.array(), otherwise return as a list

    Notes
    -----
    For a list of available analysis results,
        see [bDetection.getDefaultDetection()][sanpy.bDetection.bDetection]

    If the returned list of analysis results are in points,
        convert to seconds or ms using: pnt2Sec_(pnt) or pnt2Ms_(pnt).

    Returns
    -------
    list or np.array
        List of analysis parameter values, None if error.
        Returns a np.array is asArray is True
    """

    def clean(val):
        """Convert None to float('nan')"""
        if val is None:
            val = float("nan")
        return val

    x = []  # None
    y = []  # None
    error = False
    if len(self.spikeDict) == 0:
        # logger.error(f'Did not find any spikes in spikeDict')
        error = True
    elif statName1 not in self.spikeDict[0].keys():
        logger.error(f'Did not find statName1: "{statName1}" in spikeDict')
        # print('available stat names are:', self.spikeDict[0].keys())
        error = True
    elif statName2 is not None and statName2 not in self.spikeDict[0].keys():
        logger.error(f'Did not find statName2: "{statName2}" in spikeDict')
        error = True

    if sweepNumber is None:
        sweepNumber = "All"

    if epochNumber is None:
        epochNumber = "All"

    if not error:
        # original
        # x = [clean(spike[statName1]) for spike in self.spikeDict]

        if getFullList:
            # April 15, 2023, trying to fix bug in scatter plugin when we are
            # using sweep and epoch
            # strategy is to return all spikes, just nan out the ones we 
            # are not interested in
            x = []
            for spike in self.spikeDict:
                _include = \
                    (sweepNumber == "All" or spike["sweep"] == sweepNumber) \
                        and (epochNumber == "All" or spike["epoch"] == epochNumber)
                if _include:
                    x.append(clean(spike[statName1]))
                else:
                    x.append(float("nan"))

        else:
            # only current sweep and epoch
            # (1) was this
            # was causing errors with kym diam analysis
            x = [
                clean(spike[statName1])
                for spike in self.spikeDict
                if (sweepNumber == "All" or spike["sweep"] == sweepNumber)
                and (epochNumber == "All" or spike["epoch"] == epochNumber)
            ]
            # for _idx, spike in enumerate(self.spikeDict):
            #     if (sweepNumber == "All" or spike["sweep"] == sweepNumber) and (epochNumber == "All" or spike["epoch"] == epochNumber):
            #         try:
            #             val = spike[statName1]
            #         except (KeyError) as e:
            #             logger.error(f'did not find key "{statName1}" at spike {_idx}')
            #         clean(val)

        if statName2 is not None:
            # original
            # y = [clean(spike[statName2]) for spike in self.spikeDict]
            # only current spweek
            y = [
                clean(spike[statName2])
                for spike in self.spikeDict
                if sweepNumber == "All" or spike["sweep"] == sweepNumber
            ]

    if asArray:
        x = np.array(x)
        if statName2 is not None:
            y = np.array(y)

    if statName2 is not None:
        return x, y
    else:
        return x

getStatMean(statName, sweepNumber=None) ¤

Get the mean of an analysis parameter.

Args: statName (str): Name of the statistic to retreive. For a list of available stats use bDetection.defaultDetection.

Source code in sanpy/bAnalysis_.py
539
540
541
542
543
544
545
546
547
548
549
550
551
def getStatMean(self, statName: str, sweepNumber: int = None):
    """
    Get the mean of an analysis parameter.

    Args:
        statName (str): Name of the statistic to retreive.
            For a list of available stats use bDetection.defaultDetection.
    """
    theMean = None
    x = self.getStat(statName, sweepNumber=sweepNumber)
    if x is not None and len(x) > 1:
        theMean = np.nanmean(x)
    return theMean

getSweepSpikeFromAbsolute(absSpikeIdx, sweep) ¤

Get sweep spike from absolute spike.

See getAbsSpikeFromSweep()

Source code in sanpy/bAnalysis_.py
517
518
519
520
521
522
523
def getSweepSpikeFromAbsolute(self, absSpikeIdx: int, sweep: int) -> int:
    """Get sweep spike from absolute spike.

    See getAbsSpikeFromSweep()
    """
    sweepSpikeNum = self.spikeDict[absSpikeIdx]["sweepSpikeNumber"]
    return sweepSpikeNum

isAnalyzed() ¤

Return True if this bAnalysis has been analyzed, False otherwise.

Source code in sanpy/bAnalysis_.py
535
536
537
def isAnalyzed(self):
    """Return True if this bAnalysis has been analyzed, False otherwise."""
    return self._isAnalyzed

isDirty() ¤

Return True if analysis has been modified but not save.

Source code in sanpy/bAnalysis_.py
531
532
533
def isDirty(self):
    """Return True if analysis has been modified but not save."""
    return self._detectionDirty

printSpike(idx) ¤

Print values in one spike analysis using self.spikeDict (sanpy.bAnalysisResults).

Source code in sanpy/bAnalysis_.py
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
def printSpike(self, idx):
    """
    Print values in one spike analysis using self.spikeDict (sanpy.bAnalysisResults).
    """
    spike = self.spikeDict[idx]
    for k, v in spike.items():
        if k == "widths":
            widths = v
            print(f"  spike:{idx} has {len(widths)} widths...")
            for wIdx, width in enumerate(widths):
                print(f"    spike:{idx} width:{wIdx}: {width}")
        elif k == "errors":
            errors = v
            print(f"  spike:{idx} has {len(errors)} errors...")
            for eIdx, error in enumerate(errors):
                print(f"    spike:{idx} error #:{eIdx}: {error}")
        else:
            print(f"{k}: {v}")

saveAnalysis(forceSave=False) ¤

Not used.

Save detection parameters and analysis results as json.

Source code in sanpy/bAnalysis_.py
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
def saveAnalysis(self, forceSave=False):
    """Not used.

    Save detection parameters and analysis results as json.
    """
    if not self._detectionDirty and not forceSave:
        return

    saveFolder = self._getSaveFolder()
    if not os.path.isdir(saveFolder):
        logger.info(f"making folder: {saveFolder}")
        os.mkdir(saveFolder)

    saveBase = self._getSaveBase()
    savePath = saveBase + "-analysis.json"

    # save detection parameters
    # self.detectionClass.save(saveBase)
    dDict = self.detectionClass.getDict()

    saveDict = {}
    saveDict["detection"] = dDict

    # save list of dict
    # self.spikeDict = sanpy.bAnalysisResults.analysisResultList()
    # self.spikeDict.save(saveBase)
    analysisList = self.spikeDict.asList()

    saveDict["analysis"] = analysisList

    with open(savePath, "w") as f:
        json.dump(saveDict, f, cls=NumpyEncoder, indent=4)

    self._detectionDirty = False

    logger.info(f"Saved analysis to: {savePath}")

saveAnalysis_tocsv(path=None, verbose=False) ¤

Save analysis to csv.

CSV starts with one

Parameters:

Name Type Description Default
path str

Full path of file to save, if None will save as default.

None
Source code in sanpy/bAnalysis_.py
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
def saveAnalysis_tocsv(self, path : str = None, verbose=False):
    """Save analysis to csv.

    CSV starts with one 
    Parameters
    ----------
    path : str
        Full path of file to save, if None will save as default.
    """

    if path is None:
        saveFolder = self._getSaveFolder()
        if not os.path.isdir(saveFolder):
            if verbose:
                logger.info(f"making folder: {saveFolder}")
            os.mkdir(saveFolder)

        saveBase = self._getSaveBase()
        path = saveBase + "-analysis.csv"

    if verbose:
        logger.info(f'saving to: {path}')

    metaDataHeader = self.metaData.getHeader()

    with open(path, "w") as f:
        f.write(metaDataHeader)
        f.write("\n")

    df = self.asDataFrame()  # pd.DataFrame(self.spikeDict)
    if df is not None:
        df.to_csv(path, mode="a")

setSpikeStat(spikeList, stat, value) ¤

Set a spike stat for one spike or a list of spikes.

Used to set things like ('isBad', 'userType1', 'condition', ...)

Source code in sanpy/bAnalysis_.py
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def setSpikeStat(self, spikeList: Union[list, int], stat: str, value):
    """Set a spike stat for one spike or a list of spikes.

    Used to set things like ('isBad', 'userType1', 'condition', ...)
    """
    if isinstance(spikeList, int):
        spikeList = [spikeList]
        # else:
        #     logger.error(f'Expecting list[int] or int but got spikeList type {type(spikeList)}')
        return

    if len(spikeList) == 0:
        return

    now = datetime.datetime.now()
    modDate = now.strftime("%Y%m%d")
    modTime = now.strftime("%H:%M:%S")

    for spike in spikeList:
        self.spikeDict[spike][stat] = value
        self.spikeDict[spike]["modDate"] = modDate
        self.spikeDict[spike]["modTime"] = modTime

    self._detectionDirty = True

    logger.info(f'set spikes {spikeList} stat "{stat}" to value "{value}"')

    """
    count = 0
    for idx, spike in enumerate(self.spikeDict):
        if idx in spikeList:
            try:
                spike[stat] = value
                count += 1
            except (KeyError) as e:
                logger.info(e)
    #
    logger.info(f'Given {len(spikeList)} and set {count}')
    """

setSpikeStat_time(startSec, stopSec, stat, value) ¤

Set a spike stat for spikes in a range of time.

Source code in sanpy/bAnalysis_.py
584
585
586
587
588
589
590
591
592
def setSpikeStat_time(self, startSec: int, stopSec: int, stat: str, value):
    """Set a spike stat for spikes in a range of time."""

    # get spike list in range [startSec, stopSec]
    spikeSeconds = self.getSpikeSeconds()
    spikeList = [
        idx for idx, x in enumerate(spikeSeconds) if x >= startSec and x < stopSec
    ]
    self.setSpikeStat(spikeList, stat, value)

spikeDetect(detectionDict) ¤

Run spike detection for all sweeps.

Each spike is a row and has 'sweep'

Args: detectionDict: From sanpy.bDetection

Source code in sanpy/bAnalysis_.py
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
def spikeDetect(self, detectionDict: dict):
    """Run spike detection for all sweeps.

    Each spike is a row and has 'sweep'

    Args:
        detectionDict: From sanpy.bDetection
    """

    rememberSweep = (
        self.fileLoader.currentSweep
    )  # This is BAD we are mixing analysis with interface !!!

    startTime = time.time()

    #
    # todo: ask user if they want to remove their settings for (isBad, userType)
    #

    self._detectionDict = detectionDict

    if detectionDict["verbose"]:
        logger.info("=== detectionDict is:")
        for k in detectionDict.keys():
            v = detectionDict[k]
            print(f'  {k} value:"{v}" is type {type(v)}')

    self._isAnalyzed = True

    self.spikeDict = sanpy.bAnalysisResults.analysisResultList()
    # we are filling this in, one dict for each spike
    # self.spikeDict = [] # we are filling this in, one dict for each spike

    # self._spikesPerSweep = [0] * self.fileLoader.numSweeps

    for sweepNumber in self.fileLoader.sweepList:
        # self.setSweep(sweep)
        self._spikeDetect2(sweepNumber)

    #
    self.fileLoader.setSweep(rememberSweep)

    stopTime = time.time()

    if detectionDict["verbose"]:
        logger.info(
            f"Detected {len(self.spikeDict)} spikes in {round(stopTime-startTime,3)} seconds"
        )
All material is Copyright 2011-2023 Robert H. Cudmore